Question Number 66431 by hmamarques1994@gmail.com last updated on 15/Aug/19
$$\: \\ $$$$\:\boldsymbol{\mathrm{Determine}}\:\:\boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{y}}: \\ $$$$\: \\ $$$$\:\begin{cases}{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{\mathrm{i}}}}} +\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}^{\boldsymbol{\mathrm{i}}\sqrt{\boldsymbol{\mathrm{i}}}} }\:=\:\mathrm{10}}\\{\frac{\mathrm{1}}{\left(\boldsymbol{\mathrm{xy}}\right)^{\boldsymbol{\mathrm{i}}\sqrt{\boldsymbol{\mathrm{i}}}} }\:=\:\mathrm{21}}\end{cases} \\ $$$$\: \\ $$
Answered by MJS last updated on 15/Aug/19
$${x}^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{i}}}} ={x}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i}} \\ $$$$\frac{\mathrm{1}}{{y}^{\mathrm{i}\sqrt{\mathrm{i}}} }={y}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i}} \\ $$$${a}+{b}=\mathrm{10} \\ $$$${ab}=\mathrm{21} \\ $$$$\Rightarrow\:{a}=\mathrm{3}\wedge{b}=\mathrm{7}\:\vee\:{a}=\mathrm{7}\wedge{b}=\mathrm{3} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{solve} \\ $$$$ \\ $$$${z}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i}} =\mathrm{3}\:\Rightarrow\:{z}=\mathrm{3}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \mathrm{e}^{\mathrm{i}\frac{\sqrt{\mathrm{2}}\mathrm{ln}\:\mathrm{3}}{\mathrm{2}}} \approx\mathrm{1}.\mathrm{55077}+\mathrm{1}.\mathrm{52444i} \\ $$$$ \\ $$$${z}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i}} =\mathrm{7}\:\Rightarrow\:{z}=\mathrm{7}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \mathrm{e}^{\mathrm{i}\frac{\sqrt{\mathrm{2}}\mathrm{ln}\:\mathrm{7}}{\mathrm{2}}} \approx.\mathrm{766442}+\mathrm{3}.\mathrm{88400i} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\vee{z}=\mathrm{7}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \mathrm{e}^{\pi\sqrt{\mathrm{2}}} \mathrm{e}^{\mathrm{i}\frac{\sqrt{\mathrm{2}}\left(\mathrm{ln}\:\mathrm{7}\:−\mathrm{2}\pi\right)}{\mathrm{2}}} \approx−\mathrm{335}.\mathrm{646}−\mathrm{25}.\mathrm{1114i} \\ $$$$ \\ $$$$\mathrm{solutions}: \\ $$$$ \\ $$$${x}=\mathrm{3}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \mathrm{e}^{\mathrm{i}\frac{\sqrt{\mathrm{2}}\mathrm{ln}\:\mathrm{3}}{\mathrm{2}}} \wedge{y}=\mathrm{7}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \mathrm{e}^{\mathrm{i}\frac{\sqrt{\mathrm{2}}\mathrm{ln}\:\mathrm{7}}{\mathrm{2}}} \\ $$$${x}=\mathrm{3}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \mathrm{e}^{\mathrm{i}\frac{\sqrt{\mathrm{2}}\mathrm{ln}\:\mathrm{3}}{\mathrm{2}}} \wedge{y}=\mathrm{7}^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \mathrm{e}^{\pi\sqrt{\mathrm{2}}} \mathrm{e}^{\mathrm{i}\frac{\sqrt{\mathrm{2}}\left(\mathrm{ln}\:\mathrm{7}\:−\mathrm{2}\pi\right)}{\mathrm{2}}} \\ $$$$\mathrm{and}\:\mathrm{exchange}\:{x}\rightleftarrows{y} \\ $$