Menu Close

5-log-2-3-is-transcendental-General-Let-a-b-and-c-algebraic-and-log-b-c-transcendental-If-a-log-b-c-is-algebraic-so-b-a-q-with-q-rational-




Question Number 10912 by geovane10math last updated on 01/Mar/17
5^(log_2 3)  is transcendental?  General:  Let a,b and c algebraic and log_b c   transcendental. If a^(log_b c)  is algebraic, so  b = a^q , with q rational?
$$\mathrm{5}^{\mathrm{log}_{\mathrm{2}} \mathrm{3}} \:\mathrm{is}\:\mathrm{transcendental}? \\ $$$$\mathrm{General}: \\ $$$$\mathrm{Let}\:{a},{b}\:\mathrm{and}\:{c}\:\mathrm{algebraic}\:\mathrm{and}\:\mathrm{log}_{{b}} {c}\: \\ $$$$\mathrm{transcendental}.\:\mathrm{If}\:{a}^{\mathrm{log}_{{b}} {c}} \:\mathrm{is}\:\mathrm{algebraic},\:\mathrm{so} \\ $$$${b}\:=\:{a}^{{q}} ,\:\mathrm{with}\:{q}\:\mathrm{rational}? \\ $$
Commented by FilupS last updated on 03/Mar/17
A transendental number is one that  is non alegebraic     x=5^(log_2 3)   one method of log_b (c) is trancendental if:  a≠b (and a is prime)
$$\mathrm{A}\:\mathrm{transendental}\:\mathrm{number}\:\mathrm{is}\:\mathrm{one}\:\mathrm{that} \\ $$$$\mathrm{is}\:\mathrm{non}\:\mathrm{alegebraic} \\ $$$$\: \\ $$$${x}=\mathrm{5}^{\mathrm{log}_{\mathrm{2}} \mathrm{3}} \\ $$$$\mathrm{one}\:\mathrm{method}\:\mathrm{of}\:\mathrm{log}_{{b}} \left({c}\right)\:\mathrm{is}\:\mathrm{trancendental}\:\mathrm{if}: \\ $$$${a}\neq{b}\:\left(\mathrm{and}\:{a}\:\mathrm{is}\:\mathrm{prime}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *