Menu Close

hence-show-that-i-1-cos4-sin4-tan2-ii-1-cos6-sin6-tan3-




Question Number 10917 by okhema last updated on 02/Mar/17
hence show that  i)((1−cos4θ)/(sin4θ))=tan2θ  ii)((1−cos6θ)/(sin6θ))=tan3θ
$${hence}\:{show}\:{that} \\ $$$$\left.{i}\right)\frac{\mathrm{1}−{cos}\mathrm{4}\theta}{{sin}\mathrm{4}\theta}={tan}\mathrm{2}\theta \\ $$$$\left.{ii}\right)\frac{\mathrm{1}−{cos}\mathrm{6}\theta}{{sin}\mathrm{6}\theta}={tan}\mathrm{3}\theta \\ $$
Answered by sandy_suhendra last updated on 02/Mar/17
we use    cos 2θ=1−2sin^2 θ ⇒ 2sin^2 θ=1−cos2θ  and   sin2θ=2sinθcosθ  with the same way  1−cos4θ=2sin^2 2θ                                       1−cos6θ=2sin^2 3θ                                        sin4θ=2sin2θcos2θ                                        sin6θ=2sin3θcos3θ  i) ((2sin^2 2θ)/(2sin2θcos2θ)) = ((sin2θ)/(cos2θ)) = tan2θ  ii) ((2sin^2 3θ)/(2sin3θcos3θ)) = ((sin3θ)/(cos3θ)) = tan3θ
$$\mathrm{we}\:\mathrm{use}\:\:\:\:\mathrm{cos}\:\mathrm{2}\theta=\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \theta\:\Rightarrow\:\mathrm{2sin}^{\mathrm{2}} \theta=\mathrm{1}−\mathrm{cos2}\theta \\ $$$$\mathrm{and}\:\:\:\mathrm{sin2}\theta=\mathrm{2sin}\theta\mathrm{cos}\theta \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{same}\:\mathrm{way}\:\:\mathrm{1}−\mathrm{cos4}\theta=\mathrm{2sin}^{\mathrm{2}} \mathrm{2}\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}−\mathrm{cos6}\theta=\mathrm{2sin}^{\mathrm{2}} \mathrm{3}\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin4}\theta=\mathrm{2sin2}\theta\mathrm{cos2}\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin6}\theta=\mathrm{2sin3}\theta\mathrm{cos3}\theta \\ $$$$\left.\mathrm{i}\right)\:\frac{\mathrm{2sin}^{\mathrm{2}} \mathrm{2}\theta}{\mathrm{2sin2}\theta\mathrm{cos2}\theta}\:=\:\frac{\mathrm{sin2}\theta}{\mathrm{cos2}\theta}\:=\:\mathrm{tan2}\theta \\ $$$$\left.\mathrm{ii}\right)\:\frac{\mathrm{2sin}^{\mathrm{2}} \mathrm{3}\theta}{\mathrm{2sin3}\theta\mathrm{cos3}\theta}\:=\:\frac{\mathrm{sin3}\theta}{\mathrm{cos3}\theta}\:=\:\mathrm{tan3}\theta \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *