Menu Close

e-x-e-3x-5e-2x-6-sin-2e-x-dx-




Question Number 76465 by kaivan.ahmadi last updated on 27/Dec/19
∫e^(−x) (−e^(−3x) +5e^(−2x) −6)sin(2e^(−x) )dx
$$\int{e}^{−{x}} \left(−{e}^{−\mathrm{3}{x}} +\mathrm{5}{e}^{−\mathrm{2}{x}} −\mathrm{6}\right){sin}\left(\mathrm{2}{e}^{−{x}} \right){dx} \\ $$
Answered by john santu last updated on 28/Dec/19
(1/2)(3e^(−3x) −10e^(−2x) )cos (2e^(−x) )+(1/4)(3e^(−2x) −10e^(−x) )sin (2e^(−x) )  +(1/8)(−6e^(−x) −10)cos (2e^(−x) )−(3/8)sin (2e^(−x) )+C
$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}{e}^{−\mathrm{3}{x}} −\mathrm{10}{e}^{−\mathrm{2}{x}} \right)\mathrm{cos}\:\left(\mathrm{2}{e}^{−{x}} \right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{3}{e}^{−\mathrm{2}{x}} −\mathrm{10}{e}^{−{x}} \right)\mathrm{sin}\:\left(\mathrm{2}{e}^{−{x}} \right) \\ $$$$+\frac{\mathrm{1}}{\mathrm{8}}\left(−\mathrm{6}{e}^{−{x}} −\mathrm{10}\right)\mathrm{cos}\:\left(\mathrm{2}{e}^{−{x}} \right)−\frac{\mathrm{3}}{\mathrm{8}}\mathrm{sin}\:\left(\mathrm{2}{e}^{−{x}} \right)+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *