Menu Close

Find-all-ordered-pairs-a-b-so-that-ab-a-b-is-an-integer-a-and-b-are-integers-




Question Number 10944 by 314159 last updated on 03/Mar/17
Find all ordered pairs (a,b) so that ((ab)/(a+b)) is an integer.  (a and b are integers).
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{ordered}\:\mathrm{pairs}\:\left(\mathrm{a},\mathrm{b}\right)\:\mathrm{so}\:\mathrm{that}\:\frac{\mathrm{ab}}{\mathrm{a}+\mathrm{b}}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}. \\ $$$$\left(\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{integers}\right). \\ $$
Commented by FilupS last updated on 03/Mar/17
n=((ab)/(a+b)),     n, a, b ∈ Z     n=((ab)/(a+b))    ⇒    ab≥a+b  ∵∀(ab<a+b) ⇒ 0<n<1 ⇒ n∉Z     ab≥a+b  a(b−1)=b  a=(b/(b−1))  ∴ (b/(b−1))∈Z  if b=2   ⇒   a=(2/(2−1))=2     ∴(2, 2) is a solution.  I am unsure if this is the only solution  because this is a bad attempt
$${n}=\frac{{ab}}{{a}+{b}},\:\:\:\:\:{n},\:{a},\:{b}\:\in\:\mathbb{Z} \\ $$$$\: \\ $$$${n}=\frac{{ab}}{{a}+{b}}\:\:\:\:\Rightarrow\:\:\:\:{ab}\geqslant{a}+{b} \\ $$$$\because\forall\left({ab}<{a}+{b}\right)\:\Rightarrow\:\mathrm{0}<{n}<\mathrm{1}\:\Rightarrow\:{n}\notin\mathbb{Z} \\ $$$$\: \\ $$$${ab}\geqslant{a}+{b} \\ $$$${a}\left({b}−\mathrm{1}\right)={b} \\ $$$${a}=\frac{{b}}{{b}−\mathrm{1}} \\ $$$$\therefore\:\frac{{b}}{{b}−\mathrm{1}}\in\mathbb{Z} \\ $$$$\mathrm{if}\:{b}=\mathrm{2}\:\:\:\Rightarrow\:\:\:{a}=\frac{\mathrm{2}}{\mathrm{2}−\mathrm{1}}=\mathrm{2} \\ $$$$\: \\ $$$$\therefore\left(\mathrm{2},\:\mathrm{2}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}. \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{unsure}\:\mathrm{if}\:\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{only}\:\mathrm{solution} \\ $$$$\mathrm{because}\:\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{bad}\:\mathrm{attempt} \\ $$
Commented by mrW1 last updated on 04/Mar/17
i think there should be infinite number pairs:  2/2  3/6  4/4    4/12  5/20  6/6    6/12    6/30  7/42  8/8    8/24    8/56  9/18    9/72  10/10    10/15    10/40  11/110  12/12    12/24    12/36    12/60   12/132  13/156  14/14    14/84    14/182  ......
$${i}\:{think}\:{there}\:{should}\:{be}\:{infinite}\:{number}\:{pairs}: \\ $$$$\mathrm{2}/\mathrm{2} \\ $$$$\mathrm{3}/\mathrm{6} \\ $$$$\mathrm{4}/\mathrm{4}\:\:\:\:\mathrm{4}/\mathrm{12} \\ $$$$\mathrm{5}/\mathrm{20} \\ $$$$\mathrm{6}/\mathrm{6}\:\:\:\:\mathrm{6}/\mathrm{12}\:\:\:\:\mathrm{6}/\mathrm{30} \\ $$$$\mathrm{7}/\mathrm{42} \\ $$$$\mathrm{8}/\mathrm{8}\:\:\:\:\mathrm{8}/\mathrm{24}\:\:\:\:\mathrm{8}/\mathrm{56} \\ $$$$\mathrm{9}/\mathrm{18}\:\:\:\:\mathrm{9}/\mathrm{72} \\ $$$$\mathrm{10}/\mathrm{10}\:\:\:\:\mathrm{10}/\mathrm{15}\:\:\:\:\mathrm{10}/\mathrm{40} \\ $$$$\mathrm{11}/\mathrm{110} \\ $$$$\mathrm{12}/\mathrm{12}\:\:\:\:\mathrm{12}/\mathrm{24}\:\:\:\:\mathrm{12}/\mathrm{36}\:\:\:\:\mathrm{12}/\mathrm{60}\:\:\:\mathrm{12}/\mathrm{132} \\ $$$$\mathrm{13}/\mathrm{156} \\ $$$$\mathrm{14}/\mathrm{14}\:\:\:\:\mathrm{14}/\mathrm{84}\:\:\:\:\mathrm{14}/\mathrm{182} \\ $$$$…… \\ $$
Answered by mrW1 last updated on 04/Mar/17
let ((ab)/(a+b))=n  let b≥a and b=ka (k≥1)  ⇒((aka)/((1+k)a))=n  a=((1+k)/k)×n=n+(n/k)  with (n/k)=i or k=(n/i)  ⇒a=n+i  b=ka=(n/i)(n+i)=n(1+(n/i))  with (n/i)=j or n=ji  ⇒a=n+i=ji+i=(1+j)i  ⇒b=n(1+j)=j(1+j)i    i.e. the solution is   { ((a=(1+j)i)),((b=j(1+j)i)) :}  i,j∈N    e.g.  i=1, j=1,2,3,4...  a/b=2/2, 3/6, 4/12, 5/20, 6/30......    i=2, j=1,2,3,4...  a/b=4/4, 6/12, 8/24, 10/40, 12/60......    i=3, j=1,2,3,4...  a/b=6/6, 9/18, 12/36, 15/60, 18/90......  .....    We see in the solution that a is the  product of 2 numbers and b is the  product of 3 numbers and b=a×j.    For every a ≥2,   if a is a prime number, there is one  corresponding value for b, and  if a is no prime number, there are two  or more corresponding values for b.    E.g. a=7 (prime number) which can  only be expressed as  7×1   (j=6)  ⇒there is only one value for b:  b=7×6=42    E.g. a=12 which can be expressed as  12×1  (j=11)  3×4   (j=2)  4×3   (j=3)  2×6   (j=1)  6×2   (j=5)  ⇒there are 5 values for b:  b=12×1=12  b=12×2=24  b=12×3=36  b=12×5=60  b=12×11=132    the pairs of a and b for a from 2 till 14  see comment above.
$${let}\:\frac{{ab}}{{a}+{b}}={n} \\ $$$${let}\:{b}\geqslant{a}\:{and}\:{b}={ka}\:\left({k}\geqslant\mathrm{1}\right) \\ $$$$\Rightarrow\frac{{aka}}{\left(\mathrm{1}+{k}\right){a}}={n} \\ $$$${a}=\frac{\mathrm{1}+{k}}{{k}}×{n}={n}+\frac{{n}}{{k}} \\ $$$${with}\:\frac{{n}}{{k}}={i}\:{or}\:{k}=\frac{{n}}{{i}} \\ $$$$\Rightarrow{a}={n}+{i} \\ $$$${b}={ka}=\frac{{n}}{{i}}\left({n}+{i}\right)={n}\left(\mathrm{1}+\frac{{n}}{{i}}\right) \\ $$$${with}\:\frac{{n}}{{i}}={j}\:{or}\:{n}={ji} \\ $$$$\Rightarrow{a}={n}+{i}={ji}+{i}=\left(\mathrm{1}+{j}\right){i} \\ $$$$\Rightarrow{b}={n}\left(\mathrm{1}+{j}\right)={j}\left(\mathrm{1}+{j}\right){i} \\ $$$$ \\ $$$${i}.{e}.\:{the}\:{solution}\:{is} \\ $$$$\begin{cases}{{a}=\left(\mathrm{1}+{j}\right){i}}\\{{b}={j}\left(\mathrm{1}+{j}\right){i}}\end{cases} \\ $$$${i},{j}\in\mathbb{N} \\ $$$$ \\ $$$${e}.{g}. \\ $$$${i}=\mathrm{1},\:{j}=\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}… \\ $$$${a}/{b}=\mathrm{2}/\mathrm{2},\:\mathrm{3}/\mathrm{6},\:\mathrm{4}/\mathrm{12},\:\mathrm{5}/\mathrm{20},\:\mathrm{6}/\mathrm{30}…… \\ $$$$ \\ $$$${i}=\mathrm{2},\:{j}=\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}… \\ $$$${a}/{b}=\mathrm{4}/\mathrm{4},\:\mathrm{6}/\mathrm{12},\:\mathrm{8}/\mathrm{24},\:\mathrm{10}/\mathrm{40},\:\mathrm{12}/\mathrm{60}…… \\ $$$$ \\ $$$${i}=\mathrm{3},\:{j}=\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}… \\ $$$${a}/{b}=\mathrm{6}/\mathrm{6},\:\mathrm{9}/\mathrm{18},\:\mathrm{12}/\mathrm{36},\:\mathrm{15}/\mathrm{60},\:\mathrm{18}/\mathrm{90}…… \\ $$$$….. \\ $$$$ \\ $$$${We}\:{see}\:{in}\:{the}\:{solution}\:{that}\:{a}\:{is}\:{the} \\ $$$${product}\:{of}\:\mathrm{2}\:{numbers}\:{and}\:{b}\:{is}\:{the} \\ $$$${product}\:{of}\:\mathrm{3}\:{numbers}\:{and}\:{b}={a}×{j}. \\ $$$$ \\ $$$${For}\:{every}\:{a}\:\geqslant\mathrm{2},\: \\ $$$${if}\:{a}\:{is}\:{a}\:{prime}\:{number},\:{there}\:{is}\:{one} \\ $$$${corresponding}\:{value}\:{for}\:{b},\:{and} \\ $$$${if}\:{a}\:{is}\:{no}\:{prime}\:{number},\:{there}\:{are}\:{two} \\ $$$${or}\:{more}\:{corresponding}\:{values}\:{for}\:{b}. \\ $$$$ \\ $$$${E}.{g}.\:{a}=\mathrm{7}\:\left({prime}\:{number}\right)\:{which}\:{can} \\ $$$${only}\:{be}\:{expressed}\:{as} \\ $$$$\mathrm{7}×\mathrm{1}\:\:\:\left({j}=\mathrm{6}\right) \\ $$$$\Rightarrow{there}\:{is}\:{only}\:{one}\:{value}\:{for}\:{b}: \\ $$$${b}=\mathrm{7}×\mathrm{6}=\mathrm{42} \\ $$$$ \\ $$$${E}.{g}.\:{a}=\mathrm{12}\:{which}\:{can}\:{be}\:{expressed}\:{as} \\ $$$$\mathrm{12}×\mathrm{1}\:\:\left({j}=\mathrm{11}\right) \\ $$$$\mathrm{3}×\mathrm{4}\:\:\:\left({j}=\mathrm{2}\right) \\ $$$$\mathrm{4}×\mathrm{3}\:\:\:\left({j}=\mathrm{3}\right) \\ $$$$\mathrm{2}×\mathrm{6}\:\:\:\left({j}=\mathrm{1}\right) \\ $$$$\mathrm{6}×\mathrm{2}\:\:\:\left({j}=\mathrm{5}\right) \\ $$$$\Rightarrow{there}\:{are}\:\mathrm{5}\:{values}\:{for}\:{b}: \\ $$$${b}=\mathrm{12}×\mathrm{1}=\mathrm{12} \\ $$$${b}=\mathrm{12}×\mathrm{2}=\mathrm{24} \\ $$$${b}=\mathrm{12}×\mathrm{3}=\mathrm{36} \\ $$$${b}=\mathrm{12}×\mathrm{5}=\mathrm{60} \\ $$$${b}=\mathrm{12}×\mathrm{11}=\mathrm{132} \\ $$$$ \\ $$$${the}\:{pairs}\:{of}\:{a}\:{and}\:{b}\:{for}\:{a}\:{from}\:\mathrm{2}\:{till}\:\mathrm{14} \\ $$$${see}\:{comment}\:{above}. \\ $$
Commented by FilupS last updated on 04/Mar/17
I Tried a slimilar subtitution, but couldnt  work with it.Awesome job
$$\mathrm{I}\:\mathrm{Tried}\:\mathrm{a}\:\mathrm{slimilar}\:\mathrm{subtitution},\:\mathrm{but}\:\mathrm{couldnt} \\ $$$$\mathrm{work}\:\mathrm{with}\:\mathrm{it}.\mathrm{Awesome}\:\mathrm{job} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *