Menu Close

y-x-2-2-x-1-3-2-Let-p-x-1-y-p-1-2p-3-2-Is-it-true-that-dy-dx-dy-dp-




Question Number 10956 by Joel576 last updated on 04/Mar/17
y = ((x − 2)/(2(x − 1)^(3/2) ))  Let  p = x − 1  ⇒ y = ((p − 1)/(2p^(3/2) ))    Is it true that   (dy/dx)   =  (dy/dp)  ?
$${y}\:=\:\frac{{x}\:−\:\mathrm{2}}{\mathrm{2}\left({x}\:−\:\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} } \\ $$$$\mathrm{Let}\:\:{p}\:=\:{x}\:−\:\mathrm{1} \\ $$$$\Rightarrow\:{y}\:=\:\frac{{p}\:−\:\mathrm{1}}{\mathrm{2}{p}^{\mathrm{3}/\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{Is}\:\mathrm{it}\:\mathrm{true}\:\mathrm{that}\:\:\:\frac{{dy}}{{dx}}\:\:\:=\:\:\frac{{dy}}{{dp}}\:\:? \\ $$
Commented by FilupS last updated on 04/Mar/17
if p is direct substitution  f(x)=f(p)  ∴f ′(x)=f ′(p)
$$\mathrm{if}\:{p}\:\mathrm{is}\:\mathrm{direct}\:\mathrm{substitution} \\ $$$${f}\left({x}\right)={f}\left({p}\right) \\ $$$$\therefore{f}\:'\left({x}\right)={f}\:'\left({p}\right) \\ $$
Commented by Joel576 last updated on 04/Mar/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$
Commented by FilupS last updated on 04/Mar/17
only if you substitute the correct values     e.g.  p=x−1  f(x)≠f(x−1) ⇒  (dy/dx)≠(dy/dp)=(dy/(d(x−1)))  you have to resubstitue x
$$\mathrm{only}\:\mathrm{if}\:\mathrm{you}\:\mathrm{substitute}\:\mathrm{the}\:\mathrm{correct}\:\mathrm{values} \\ $$$$\: \\ $$$$\mathrm{e}.\mathrm{g}. \\ $$$${p}={x}−\mathrm{1} \\ $$$${f}\left({x}\right)\neq{f}\left({x}−\mathrm{1}\right)\:\Rightarrow\:\:\frac{{dy}}{{dx}}\neq\frac{{dy}}{{dp}}=\frac{{dy}}{{d}\left({x}−\mathrm{1}\right)} \\ $$$$\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{resubstitue}\:{x} \\ $$
Commented by FilupS last updated on 04/Mar/17
if x=g(u)  and u=h(x)     y=f(x)  y=g(h(x))  ∴ (dy/dx)=(dy/du)×(du/dx)
$$\mathrm{if}\:{x}={g}\left({u}\right) \\ $$$$\mathrm{and}\:{u}={h}\left({x}\right) \\ $$$$\: \\ $$$${y}={f}\left({x}\right) \\ $$$${y}={g}\left({h}\left({x}\right)\right) \\ $$$$\therefore\:\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}×\frac{{du}}{{dx}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *