Menu Close

Prove-that-3-gt-log-2-3-2-gt-2-




Question Number 10995 by Nadium last updated on 06/Mar/17
Prove that 3>(log_2 3)^2 >2.
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{3}>\left(\mathrm{log}_{\mathrm{2}} \mathrm{3}\right)^{\mathrm{2}} >\mathrm{2}. \\ $$
Commented by FilupS last updated on 06/Mar/17
for  l=log_n x  if n>1 and x≥1, l≥0     ⇒ if 1<x<n, 0<l<1    (∗)     (log_2 3)^2 =(log_2 3)(log_2 3)  ∴ (3/(log_2 3))>log_2 3>(2/(log_2 3))  3log_3 2>log_2 3>2log_3 2     log_2 3>1  ⇒  1>log_3 2     from (∗)  ⇒ 3>3log_3 2     ∴ 3>log_2 3>2log_3 2     log_2 3>2log_3 2  log_3 2<1          from (∗)  2log_3 2<2  ⇒  2>2log_2 3     ∴3>3log_3 2>log_2 3>2>2log_2 3  3log_3 2>log_2 3>2log_2 3     working
$$\mathrm{for}\:\:{l}=\mathrm{log}_{{n}} {x} \\ $$$$\mathrm{if}\:{n}>\mathrm{1}\:\mathrm{and}\:{x}\geqslant\mathrm{1},\:{l}\geqslant\mathrm{0} \\ $$$$\:\:\:\Rightarrow\:\mathrm{if}\:\mathrm{1}<{x}<{n},\:\mathrm{0}<{l}<\mathrm{1}\:\:\:\:\left(\ast\right) \\ $$$$\: \\ $$$$\left(\mathrm{log}_{\mathrm{2}} \mathrm{3}\right)^{\mathrm{2}} =\left(\mathrm{log}_{\mathrm{2}} \mathrm{3}\right)\left(\mathrm{log}_{\mathrm{2}} \mathrm{3}\right) \\ $$$$\therefore\:\frac{\mathrm{3}}{\mathrm{log}_{\mathrm{2}} \mathrm{3}}>\mathrm{log}_{\mathrm{2}} \mathrm{3}>\frac{\mathrm{2}}{\mathrm{log}_{\mathrm{2}} \mathrm{3}} \\ $$$$\mathrm{3log}_{\mathrm{3}} \mathrm{2}>\mathrm{log}_{\mathrm{2}} \mathrm{3}>\mathrm{2log}_{\mathrm{3}} \mathrm{2} \\ $$$$\: \\ $$$$\mathrm{log}_{\mathrm{2}} \mathrm{3}>\mathrm{1}\:\:\Rightarrow\:\:\mathrm{1}>\mathrm{log}_{\mathrm{3}} \mathrm{2}\:\:\:\:\:\mathrm{from}\:\left(\ast\right) \\ $$$$\Rightarrow\:\mathrm{3}>\mathrm{3log}_{\mathrm{3}} \mathrm{2} \\ $$$$\: \\ $$$$\therefore\:\mathrm{3}>\mathrm{log}_{\mathrm{2}} \mathrm{3}>\mathrm{2log}_{\mathrm{3}} \mathrm{2} \\ $$$$\: \\ $$$$\mathrm{log}_{\mathrm{2}} \mathrm{3}>\mathrm{2log}_{\mathrm{3}} \mathrm{2} \\ $$$$\mathrm{log}_{\mathrm{3}} \mathrm{2}<\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{from}\:\left(\ast\right) \\ $$$$\mathrm{2log}_{\mathrm{3}} \mathrm{2}<\mathrm{2}\:\:\Rightarrow\:\:\mathrm{2}>\mathrm{2log}_{\mathrm{2}} \mathrm{3} \\ $$$$\: \\ $$$$\therefore\mathrm{3}>\mathrm{3log}_{\mathrm{3}} \mathrm{2}>\mathrm{log}_{\mathrm{2}} \mathrm{3}>\mathrm{2}>\mathrm{2log}_{\mathrm{2}} \mathrm{3} \\ $$$$\mathrm{3log}_{\mathrm{3}} \mathrm{2}>\mathrm{log}_{\mathrm{2}} \mathrm{3}>\mathrm{2log}_{\mathrm{2}} \mathrm{3} \\ $$$$\: \\ $$$$\mathrm{working} \\ $$
Answered by mrW1 last updated on 07/Mar/17
2log_2  3=log_2  3^2 =log_2  9>log_2  8=log_2  2^3 =3  ⇒log_2  3>(3/2)  ⇒(log_2  3)^2 >((3/2))^2 =(9/4)>(8/4)=2     ...(i)    3log_2  3=log_2  3^3 =log_2  27<log_2  32=log_2  2^5 =5  ⇒log_2  3<(5/3)  ⇒(log_2  3)^2 <((5/3))^2 =((25)/9)<((27)/9)=3    ...(ii)    (i) and (ii):  2<(log_2  3)^2 <3  or  (√2)<log_2  3<(√3)
$$\mathrm{2log}_{\mathrm{2}} \:\mathrm{3}=\mathrm{log}_{\mathrm{2}} \:\mathrm{3}^{\mathrm{2}} =\mathrm{log}_{\mathrm{2}} \:\mathrm{9}>\mathrm{log}_{\mathrm{2}} \:\mathrm{8}=\mathrm{log}_{\mathrm{2}} \:\mathrm{2}^{\mathrm{3}} =\mathrm{3} \\ $$$$\Rightarrow\mathrm{log}_{\mathrm{2}} \:\mathrm{3}>\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\right)^{\mathrm{2}} >\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{4}}>\frac{\mathrm{8}}{\mathrm{4}}=\mathrm{2}\:\:\:\:\:…\left({i}\right) \\ $$$$ \\ $$$$\mathrm{3log}_{\mathrm{2}} \:\mathrm{3}=\mathrm{log}_{\mathrm{2}} \:\mathrm{3}^{\mathrm{3}} =\mathrm{log}_{\mathrm{2}} \:\mathrm{27}<\mathrm{log}_{\mathrm{2}} \:\mathrm{32}=\mathrm{log}_{\mathrm{2}} \:\mathrm{2}^{\mathrm{5}} =\mathrm{5} \\ $$$$\Rightarrow\mathrm{log}_{\mathrm{2}} \:\mathrm{3}<\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\Rightarrow\left(\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\right)^{\mathrm{2}} <\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\mathrm{2}} =\frac{\mathrm{25}}{\mathrm{9}}<\frac{\mathrm{27}}{\mathrm{9}}=\mathrm{3}\:\:\:\:…\left({ii}\right) \\ $$$$ \\ $$$$\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$$\mathrm{2}<\left(\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\right)^{\mathrm{2}} <\mathrm{3} \\ $$$${or} \\ $$$$\sqrt{\mathrm{2}}<\mathrm{log}_{\mathrm{2}} \:\mathrm{3}<\sqrt{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *