Menu Close

y-dy-dx-d-2-y-dx-2-d-3-y-dx-3-solve-this-diffrential-equation-




Question Number 142079 by rs4089 last updated on 26/May/21
y=(dy/dx)+(d^2 y/dx^2 )+(d^3 y/dx^3 )+.....  solve this diffrential equation
$${y}=\frac{{dy}}{{dx}}+\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }+….. \\ $$$${solve}\:{this}\:{diffrential}\:{equation} \\ $$
Answered by Dwaipayan Shikari last updated on 26/May/21
y=y′+y′′+y^(′′′) +...      y=Ce^(λx)   e^(λx) =λe^(λx) +λ^2 e^(λx) +...  1=λ+λ^2 +λ^3 +...⇒1=(λ/(1−λ))⇒λ=(1/2)  y=C(√e^x )
$${y}={y}'+{y}''+{y}^{'''} +…\:\:\:\:\:\:{y}={Ce}^{\lambda{x}} \\ $$$${e}^{\lambda{x}} =\lambda{e}^{\lambda{x}} +\lambda^{\mathrm{2}} {e}^{\lambda{x}} +… \\ $$$$\mathrm{1}=\lambda+\lambda^{\mathrm{2}} +\lambda^{\mathrm{3}} +…\Rightarrow\mathrm{1}=\frac{\lambda}{\mathrm{1}−\lambda}\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${y}={C}\sqrt{{e}^{{x}} } \\ $$
Answered by mindispower last updated on 26/May/21
y=y′+y′⇒y=2y′⇒y=ke^(x/2)
$${y}={y}'+{y}'\Rightarrow{y}=\mathrm{2}{y}'\Rightarrow{y}={ke}^{\frac{{x}}{\mathrm{2}}} \\ $$
Answered by mnjuly1970 last updated on 26/May/21
   y′=−y′+y     y′=(y/2)  ....≫ ln(y)=(x/2)+C       ......  y=ke^(x/2) .....
$$\:\:\:{y}'=−{y}'+{y} \\ $$$$\:\:\:{y}'=\frac{{y}}{\mathrm{2}}\:\:….\gg\:{ln}\left({y}\right)=\frac{{x}}{\mathrm{2}}+{C} \\ $$$$\:\:\:\:\:……\:\:{y}={ke}^{\frac{{x}}{\mathrm{2}}} ….. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *