Menu Close

given-a-sequence-defined-by-3n-2n-5-n-1-does-this-sequence-converge-or-diverge-explain-




Question Number 76577 by Rio Michael last updated on 28/Dec/19
 given a sequence defined by  {((3n)/(2n+ 5))}_(n=1) ^∞ , does this   sequence converge or diverge, explain
$$\:{given}\:{a}\:{sequence}\:{defined}\:{by}\:\:\left\{\frac{\mathrm{3}{n}}{\mathrm{2}{n}+\:\mathrm{5}}\right\}_{{n}=\mathrm{1}} ^{\infty} ,\:{does}\:{this}\: \\ $$$${sequence}\:{converge}\:{or}\:{diverge},\:{explain} \\ $$
Answered by john santu last updated on 28/Dec/19
converge.  lim_(x→∝)  {((3n)/(2n+5))}=(3/2)  so {((3n)/(2n+5))} _(n=1) ^∝  converge to (3/2)
$${converge}.\:\:\underset{{x}\rightarrow\propto} {\mathrm{lim}}\:\left\{\frac{\mathrm{3}{n}}{\mathrm{2}{n}+\mathrm{5}}\right\}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${so}\:\left\{\frac{\mathrm{3}{n}}{\mathrm{2}{n}+\mathrm{5}}\right\}\underset{{n}=\mathrm{1}} {\overset{\propto} {\:}}\:{converge}\:{to}\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *