Menu Close

cos-x-sin-x-1-sin-x-1-dx-




Question Number 11042 by Mahmoud A.R last updated on 09/Mar/17
∫cos(x)(√(((sin(x)+1)/(sin(x)−1)) )) dx
$$\int{cos}\left({x}\right)\sqrt{\frac{{sin}\left({x}\right)+\mathrm{1}}{{sin}\left({x}\right)−\mathrm{1}}\:}\:{dx} \\ $$
Answered by ajfour last updated on 09/Mar/17
  ∫cos (x)(√(−((1+sin x)/(1−sin x)))) dx  =(√(−1)) ∫cos (x)(√(((1+sin x)(1+sin x))/((1−sin x)(1+sin x)))) dx  = i∫cos (x)(((1+sin x)/(cos x)))dx  =i∫(1+sin x)dx  = (√(−1)) (x−cos x) +c
$$\:\:\int\mathrm{cos}\:\left({x}\right)\sqrt{−\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{sin}\:{x}}}\:{dx} \\ $$$$=\sqrt{−\mathrm{1}}\:\int\mathrm{cos}\:\left({x}\right)\sqrt{\frac{\left(\mathrm{1}+\mathrm{sin}\:{x}\right)\left(\mathrm{1}+\mathrm{sin}\:{x}\right)}{\left(\mathrm{1}−\mathrm{sin}\:{x}\right)\left(\mathrm{1}+\mathrm{sin}\:{x}\right)}}\:{dx} \\ $$$$=\:{i}\int\mathrm{cos}\:\left({x}\right)\left(\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\right){dx} \\ $$$$={i}\int\left(\mathrm{1}+\mathrm{sin}\:{x}\right){dx} \\ $$$$=\:\sqrt{−\mathrm{1}}\:\left({x}−\mathrm{cos}\:{x}\right)\:+{c} \\ $$
Commented by Mahmoud A.R last updated on 09/Mar/17
thanks alot
$${thanks}\:{alot} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *