Menu Close

if-E-f-f-R-R-continuous-function-with-f-x-Q-x-R-then-E-




Question Number 11067 by suci last updated on 10/Mar/17
if E={f∣f:R→R continuous function with f(x)∈Q, ∀x∈R},  then E=....???
$${if}\:{E}=\left\{{f}\mid{f}:\mathbb{R}\rightarrow\mathbb{R}\:{continuous}\:{function}\:{with}\:{f}\left({x}\right)\in\mathbb{Q},\:\forall{x}\in\mathbb{R}\right\}, \\ $$$${then}\:{E}=….??? \\ $$
Commented by FilupS last updated on 10/Mar/17
Q = irrational numbers set    one example (i think):  f(x)=((2x+1)/(2x))  or  f(x)=((2x)/(2x+1))
$$\mathbb{Q}\:=\:\mathrm{irrational}\:\mathrm{numbers}\:\mathrm{set} \\ $$$$ \\ $$$$\mathrm{one}\:\mathrm{example}\:\left(\mathrm{i}\:\mathrm{think}\right): \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{1}}{\mathrm{2}{x}} \\ $$$$\mathrm{or} \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}{x}}{\mathrm{2}{x}+\mathrm{1}} \\ $$
Commented by FilupS last updated on 11/Mar/17
in general     E = {f ∣ x→(a/b),  a∧b∈Z,  a∤b}
$$\mathrm{in}\:\mathrm{general} \\ $$$$\: \\ $$$${E}\:=\:\left\{{f}\:\mid\:{x}\rightarrow\frac{{a}}{{b}},\:\:{a}\wedge{b}\in\mathbb{Z},\:\:{a}\nmid{b}\right\} \\ $$
Commented by FilupS last updated on 11/Mar/17
Also, ∀x∈R:f(x)∈Q seems tricky.     generally: f(x)=(a/b)     (where  a∤b)  a, b∈Z     if x=π  ⇒   f(π)=(a/b)  ∴kπ=(a/b)    ⇒   k∈R\Q  ∴(a/b)∉^(?) Q     thus I beleive f(x)∈Q     i am not sure
$$\mathrm{Also},\:\forall{x}\in\mathbb{R}:{f}\left({x}\right)\in\mathbb{Q}\:\mathrm{seems}\:\mathrm{tricky}. \\ $$$$\: \\ $$$$\mathrm{generally}:\:{f}\left({x}\right)=\frac{{a}}{{b}}\:\:\:\:\:\left(\mathrm{where}\:\:{a}\nmid{b}\right) \\ $$$${a},\:{b}\in\mathbb{Z} \\ $$$$\: \\ $$$$\mathrm{if}\:{x}=\pi\:\:\Rightarrow\:\:\:{f}\left(\pi\right)=\frac{{a}}{{b}} \\ $$$$\therefore{k}\pi=\frac{{a}}{{b}}\:\:\:\:\Rightarrow\:\:\:{k}\in\mathbb{R}\backslash\mathbb{Q} \\ $$$$\therefore\frac{{a}}{{b}}\overset{?} {\notin}\mathbb{Q} \\ $$$$\: \\ $$$$\mathrm{thus}\:\mathrm{I}\:\mathrm{beleive}\:{f}\left({x}\right)\in\mathbb{Q} \\ $$$$\: \\ $$$$\mathrm{i}\:\mathrm{am}\:\mathrm{not}\:\mathrm{sure} \\ $$
Commented by prakash jain last updated on 12/Mar/17
If f(x) is continuous and f(x)∈Q  ⇒f(x)=c where c is a constant ∈Q  or E is same as Q
$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{and}\:{f}\left({x}\right)\in\mathbb{Q} \\ $$$$\Rightarrow{f}\left({x}\right)={c}\:{where}\:{c}\:{is}\:{a}\:{constant}\:\in\mathbb{Q} \\ $$$${or}\:{E}\:{is}\:{same}\:{as}\:\mathbb{Q} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *