Menu Close

Show-that-t-0-x-1-where-x-e-t-2-t-2-2t-2-t-R-




Question Number 915 by 112358 last updated on 24/Apr/15
Show that ∀t≥0 , x≤1 where  x=(e^(−t) /2)(t^2 +2t+2)  , t∈R.
$${Show}\:{that}\:\forall{t}\geqslant\mathrm{0}\:,\:{x}\leqslant\mathrm{1}\:{where} \\ $$$${x}=\frac{{e}^{−{t}} }{\mathrm{2}}\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{2}\right)\:\:,\:{t}\in\mathbb{R}.\: \\ $$
Commented by 123456 last updated on 24/Apr/15
t≥0⇔−t≤0⇔e^(−t) ≤e^0 =1  x(t)=((e^(−t) (t^2 +2t+2))/2)≤((t^2 +2t+2)/2)
$${t}\geqslant\mathrm{0}\Leftrightarrow−{t}\leqslant\mathrm{0}\Leftrightarrow{e}^{−{t}} \leqslant{e}^{\mathrm{0}} =\mathrm{1} \\ $$$${x}\left({t}\right)=\frac{{e}^{−{t}} \left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{2}\right)}{\mathrm{2}}\leqslant\frac{{t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{2}}{\mathrm{2}} \\ $$
Commented by 123456 last updated on 24/Apr/15
x=(((t^2 +2t+2)e^(−t) )/2)  (dx/dt)=−((t^2 e^(−t) )/2)  t≥0⇔e^(−t) ≤1  (dx/dt)=−((t^2 e^(−t) )/2)≤−(t^2 /2)≤0
$${x}=\frac{\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{2}\right){e}^{−{t}} }{\mathrm{2}} \\ $$$$\frac{{dx}}{{dt}}=−\frac{{t}^{\mathrm{2}} {e}^{−{t}} }{\mathrm{2}} \\ $$$${t}\geqslant\mathrm{0}\Leftrightarrow{e}^{−{t}} \leqslant\mathrm{1} \\ $$$$\frac{{dx}}{{dt}}=−\frac{{t}^{\mathrm{2}} {e}^{−{t}} }{\mathrm{2}}\leqslant−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\leqslant\mathrm{0} \\ $$
Answered by 123456 last updated on 24/Apr/15
as shown in the coments  t≥0,(dx/dt)≤0  so x(t) is decreasing into t∈[0,+∞)  so for all t≥0  x(t)≤x(0)=(((0^2 +2×0+2)e^(−0) )/2)=1  x(t)≤1  as desired ■
$$\mathrm{as}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\:\mathrm{coments} \\ $$$${t}\geqslant\mathrm{0},\frac{{dx}}{{dt}}\leqslant\mathrm{0} \\ $$$$\mathrm{so}\:{x}\left({t}\right)\:\mathrm{is}\:\mathrm{decreasing}\:\mathrm{into}\:{t}\in\left[\mathrm{0},+\infty\right) \\ $$$$\mathrm{so}\:\mathrm{for}\:\mathrm{all}\:{t}\geqslant\mathrm{0} \\ $$$${x}\left({t}\right)\leqslant{x}\left(\mathrm{0}\right)=\frac{\left(\mathrm{0}^{\mathrm{2}} +\mathrm{2}×\mathrm{0}+\mathrm{2}\right){e}^{−\mathrm{0}} }{\mathrm{2}}=\mathrm{1} \\ $$$${x}\left({t}\right)\leqslant\mathrm{1} \\ $$$$\mathrm{as}\:\mathrm{desired}\:\blacksquare \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *