Menu Close

Question-142232




Question Number 142232 by liberty last updated on 28/May/21
Answered by MJS_new last updated on 28/May/21
1. x=0  ⇒ y^3 =1∧y^4 −y=0 ⇒ y=1∨y=−(1/2)±((√3)/2)i  2. y=0 ... ⇒ x=1∨x=−(1/2)±((√3)/2)i  3. y=x ... ⇒ x=y=1∨x=y=−(1/2)±((√3)/2)i  4. y=px∧x≠0∧p≠0∧p≠1  (p^3 −p^2 +1)x^3 =1 ⇒ x^3 =(1/(p^3 −p^2 +1))  (4−p^4 )x^4 =(4−p)x ⇒ x^3 =((4−p)/(4−p^4 ))  p^3 −p^2 +1=((4−p^4 )/(4−p))  5p^3 −4p^2 −p=0  p=−(1/5) ⇒ x=(5/( ((119))^(1/3) ))∧y=−(1/( ((119))^(1/3) ))∨x=(5/( ((119))^(1/3) ))(−(1/2)±((√3)/2)i)∧y=−(1/( ((119))^(1/3) ))(−(1/2)±((√3)/2)i)
$$\mathrm{1}.\:{x}=\mathrm{0} \\ $$$$\Rightarrow\:{y}^{\mathrm{3}} =\mathrm{1}\wedge{y}^{\mathrm{4}} −{y}=\mathrm{0}\:\Rightarrow\:{y}=\mathrm{1}\vee{y}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{2}.\:{y}=\mathrm{0}\:…\:\Rightarrow\:{x}=\mathrm{1}\vee{x}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{3}.\:{y}={x}\:…\:\Rightarrow\:{x}={y}=\mathrm{1}\vee{x}={y}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{4}.\:{y}={px}\wedge{x}\neq\mathrm{0}\wedge{p}\neq\mathrm{0}\wedge{p}\neq\mathrm{1} \\ $$$$\left({p}^{\mathrm{3}} −{p}^{\mathrm{2}} +\mathrm{1}\right){x}^{\mathrm{3}} =\mathrm{1}\:\Rightarrow\:{x}^{\mathrm{3}} =\frac{\mathrm{1}}{{p}^{\mathrm{3}} −{p}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\left(\mathrm{4}−{p}^{\mathrm{4}} \right){x}^{\mathrm{4}} =\left(\mathrm{4}−{p}\right){x}\:\Rightarrow\:{x}^{\mathrm{3}} =\frac{\mathrm{4}−{p}}{\mathrm{4}−{p}^{\mathrm{4}} } \\ $$$${p}^{\mathrm{3}} −{p}^{\mathrm{2}} +\mathrm{1}=\frac{\mathrm{4}−{p}^{\mathrm{4}} }{\mathrm{4}−{p}} \\ $$$$\mathrm{5}{p}^{\mathrm{3}} −\mathrm{4}{p}^{\mathrm{2}} −{p}=\mathrm{0} \\ $$$${p}=−\frac{\mathrm{1}}{\mathrm{5}}\:\Rightarrow\:{x}=\frac{\mathrm{5}}{\:\sqrt[{\mathrm{3}}]{\mathrm{119}}}\wedge{y}=−\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{119}}}\vee{x}=\frac{\mathrm{5}}{\:\sqrt[{\mathrm{3}}]{\mathrm{119}}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right)\wedge{y}=−\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{119}}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *