Menu Close

lim-x-0-x-sin-x-x-sin-x-x-sin-x-x-3-




Question Number 142309 by qaz last updated on 29/May/21
lim_(x→0^+ ) ((x^((sin x)^x ) −(sin x)^x^(sin x)  )/x^3 )=?
$$\underset{\mathrm{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{x}^{\left(\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{x}} } −\left(\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{x}^{\mathrm{sin}\:\mathrm{x}} } }{\mathrm{x}^{\mathrm{3}} }=? \\ $$
Answered by mnjuly1970 last updated on 29/May/21
   lim_(x→0)  (sin(x))^x =lim_(x→0) (x)^(sin(x)) =1    A:=lim_(x→0) (sin(x))^x      log(A)=lim_(x→0) xlog(sin(x))=^(hop) 0      A=e^0 =1       similarly  lim_(x→0) (x)^(sin(x)) =1   lim_(x→0) ((x−sin(x))/x^3 )=_(expansion) ^(maclaurin)  lim_(x→0) ((x−(x−(x^3 /(3!))))/x^3 )     𝛗 := (1/6) ....✓
$$\:\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\left({sin}\left({x}\right)\right)^{{x}} ={lim}_{{x}\rightarrow\mathrm{0}} \left({x}\right)^{{sin}\left({x}\right)} =\mathrm{1} \\ $$$$\:\:{A}:={lim}_{{x}\rightarrow\mathrm{0}} \left({sin}\left({x}\right)\right)^{{x}} \\ $$$$\:\:\:{log}\left({A}\right)={lim}_{{x}\rightarrow\mathrm{0}} {xlog}\left({sin}\left({x}\right)\right)\overset{{hop}} {=}\mathrm{0} \\ $$$$\:\:\:\:{A}={e}^{\mathrm{0}} =\mathrm{1} \\ $$$$\:\:\:\:\:{similarly}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \left({x}\right)^{{sin}\left({x}\right)} =\mathrm{1} \\ $$$$\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{x}−{sin}\left({x}\right)}{{x}^{\mathrm{3}} }\underset{{expansion}} {\overset{{maclaurin}} {=}}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{x}−\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\right)}{{x}^{\mathrm{3}} } \\ $$$$\:\:\:\boldsymbol{\phi}\::=\:\frac{\mathrm{1}}{\mathrm{6}}\:….\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *