Menu Close

Given-that-a-1-b-gt-0-Prove-the-followings-1-1-2-a-b-2-a-1-2-1-b-2-a-b-2-2-1-4-a-b-3-a-1-3-1-b-3-a-b-3-




Question Number 142325 by loveineq last updated on 30/May/21
Given that a ≥ 1 ≥ b > 0. Prove the followings:             (1)              (1/2)(a−b)^2  ≤ (a−1)^2 +(1−b)^2  ≤ (a−b)^2       (2)              (1/4)(a−b)^3  ≤ (a−1)^3 +(1−b)^3  ≤ (a−b)^3
$$\mathrm{Given}\:\mathrm{that}\:{a}\:\geqslant\:\mathrm{1}\:\geqslant\:{b}\:>\:\mathrm{0}.\:\mathrm{Prove}\:\mathrm{the}\:\mathrm{followings}:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left({a}−{b}\right)^{\mathrm{2}} \:\leqslant\:\left({a}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{1}−{b}\right)^{\mathrm{2}} \:\leqslant\:\left({a}−{b}\right)^{\mathrm{2}} \:\:\:\: \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}\left({a}−{b}\right)^{\mathrm{3}} \:\leqslant\:\left({a}−\mathrm{1}\right)^{\mathrm{3}} +\left(\mathrm{1}−{b}\right)^{\mathrm{3}} \:\leqslant\:\left({a}−{b}\right)^{\mathrm{3}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *