Menu Close

Given-that-A-and-B-are-3-3-invertible-matrices-then-A-1-B-1-A-AB-1-B-B-1-A-C-B-1-A-1-D-BA-1-




Question Number 76812 by Rio Michael last updated on 30/Dec/19
Given that A and B are 3 × 3 invertible matrices,   then (A^(−1) B)^(−1)  =  A. AB^(−1)   B.B^(−1) A  C. B^(−1) A^(−1)   D. BA^(−1)
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{3}\:×\:\mathrm{3}\:\mathrm{invertible}\:\mathrm{matrices}, \\ $$$$\:\mathrm{then}\:\left(\mathrm{A}^{−\mathrm{1}} \mathrm{B}\right)^{−\mathrm{1}} \:= \\ $$$$\mathrm{A}.\:\mathrm{AB}^{−\mathrm{1}} \\ $$$$\mathrm{B}.\mathrm{B}^{−\mathrm{1}} \mathrm{A} \\ $$$$\mathrm{C}.\:\mathrm{B}^{−\mathrm{1}} \mathrm{A}^{−\mathrm{1}} \\ $$$$\mathrm{D}.\:\mathrm{BA}^{−\mathrm{1}} \\ $$
Answered by benjo 1/2 santuyy last updated on 30/Dec/19
B^(−1)  A
$${B}^{−\mathrm{1}} \:{A} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *