Menu Close

k-0-n-1-sec-2-kpi-n-n-2-




Question Number 142393 by qaz last updated on 31/May/21
Σ_(k=0) ^(n−1) sec^2 (((kπ)/n))=n^2 ......???
$$\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mathrm{sec}^{\mathrm{2}} \left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)=\mathrm{n}^{\mathrm{2}} ……??? \\ $$
Answered by mindispower last updated on 31/May/21
=Σ_(k=0) ^(n−1) (1+tg^2 (((kπ)/n)))=n+S  S=Σ_(k=0) ^(n−1) tg^2 (((kπ)/n))=Σ_(k=1) ^(n−1) (1/(cot^2 (((kπ)/n))))withe k≠(n/2),n∉2N  n=2m+1  tg(x)=((e^(ix) −e^(−ix) )/(i(e^(ix) +e^(−ix) )))  let (Z−1)^n −(Z+1)^n =P(Z)=0  ⇒((Z−1)/(Z+1))=e^(2ik(π/n))   Z=((e^((2ikπ)/n) +1)/(1−e^((2ikπ)/n) ))=icot(((kπ)/n)),k∈[1,n−1]  We have ((P′)/P)=Σ_(k=1) ^(n−1) (1/(X−icot(((kπ)/n))))  ⇒((PP′′−p(x)′^2 )/(p^2 (x)))=Σ_(k=1) ^(n−1) −(1/((x−icot(((kπ)/n)))^2 ))  p(0)=−2  p′(0)=0,n=2m+1  p′′(z)=n(n−1)(z−1)^(n−2) −n(n−1)(z+1)^(n−2)   =−2n(n−1)  ((4n(n−1))/4)=Σ_(k=1) ^(n−1) (1/(cot^2 (((kπ)/n))))=n^2 −n  Σ_(k=0) ^(n−1) sec^2 (((kπ)/n))=n+S=n+n^2 −n=n^2   ⇔Σ_(k=0) ^(n−1) sec^2 (((kπ)/n))=n^2
$$=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left(\mathrm{1}+{tg}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)\right)={n}+{S} \\ $$$${S}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{tg}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{cot}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)}{withe}\:{k}\neq\frac{{n}}{\mathrm{2}},{n}\notin\mathrm{2}\mathbb{N} \\ $$$${n}=\mathrm{2}{m}+\mathrm{1} \\ $$$${tg}\left({x}\right)=\frac{{e}^{{ix}} −{e}^{−{ix}} }{{i}\left({e}^{{ix}} +{e}^{−{ix}} \right)} \\ $$$${let}\:\left({Z}−\mathrm{1}\right)^{{n}} −\left({Z}+\mathrm{1}\right)^{{n}} ={P}\left({Z}\right)=\mathrm{0} \\ $$$$\Rightarrow\frac{{Z}−\mathrm{1}}{{Z}+\mathrm{1}}={e}^{\mathrm{2}{ik}\frac{\pi}{{n}}} \\ $$$${Z}=\frac{{e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} +\mathrm{1}}{\mathrm{1}−{e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} }={icot}\left(\frac{{k}\pi}{{n}}\right),{k}\in\left[\mathrm{1},{n}−\mathrm{1}\right] \\ $$$${We}\:{have}\:\frac{{P}'}{{P}}=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{X}−{icot}\left(\frac{{k}\pi}{{n}}\right)} \\ $$$$\Rightarrow\frac{{PP}''−{p}\left({x}\right)'^{\mathrm{2}} }{{p}^{\mathrm{2}} \left({x}\right)}=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}−\frac{\mathrm{1}}{\left({x}−{icot}\left(\frac{{k}\pi}{{n}}\right)\right)^{\mathrm{2}} } \\ $$$${p}\left(\mathrm{0}\right)=−\mathrm{2} \\ $$$${p}'\left(\mathrm{0}\right)=\mathrm{0},{n}=\mathrm{2}{m}+\mathrm{1} \\ $$$${p}''\left({z}\right)={n}\left({n}−\mathrm{1}\right)\left({z}−\mathrm{1}\right)^{{n}−\mathrm{2}} −{n}\left({n}−\mathrm{1}\right)\left({z}+\mathrm{1}\right)^{{n}−\mathrm{2}} \\ $$$$=−\mathrm{2}{n}\left({n}−\mathrm{1}\right) \\ $$$$\frac{\mathrm{4}{n}\left({n}−\mathrm{1}\right)}{\mathrm{4}}=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{cot}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)}={n}^{\mathrm{2}} −{n} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{sec}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)={n}+{S}={n}+{n}^{\mathrm{2}} −{n}={n}^{\mathrm{2}} \\ $$$$\Leftrightarrow\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{sec}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)={n}^{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by qaz last updated on 31/May/21
thank you Sir power
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir}\:\mathrm{power} \\ $$
Commented by mindispower last updated on 01/Jun/21
pleasur
$${pleasur} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *