Menu Close

Given-f-x-1-1-2-x-find-the-value-of-f-1-2018-f-3-2018-f-2015-2018-f-2017-2018-




Question Number 142630 by iloveisrael last updated on 03/Jun/21
 Given f(x)=(1/(1+2^x ))  find the value of  f((1/(2018)))×f((3/(2018)))×f(((2015)/(2018)))×f(((2017)/(2018)))=?
$$\:{Given}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{{x}} } \\ $$$${find}\:{the}\:{value}\:{of} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{2018}}\right)×{f}\left(\frac{\mathrm{3}}{\mathrm{2018}}\right)×{f}\left(\frac{\mathrm{2015}}{\mathrm{2018}}\right)×{f}\left(\frac{\mathrm{2017}}{\mathrm{2018}}\right)=? \\ $$
Commented by MJS_new last updated on 03/Jun/21
no “nice” value  a=(1/(2018))  f(a)f(3a)f(1−3a)f(1−a)=  =((16^a )/((2^a +1)(2^a +2)(8^a +1)(8^a +2)))≈.0277841315
$$\mathrm{no}\:“\mathrm{nice}''\:\mathrm{value} \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2018}} \\ $$$${f}\left({a}\right){f}\left(\mathrm{3}{a}\right){f}\left(\mathrm{1}−\mathrm{3}{a}\right){f}\left(\mathrm{1}−{a}\right)= \\ $$$$=\frac{\mathrm{16}^{{a}} }{\left(\mathrm{2}^{{a}} +\mathrm{1}\right)\left(\mathrm{2}^{{a}} +\mathrm{2}\right)\left(\mathrm{8}^{{a}} +\mathrm{1}\right)\left(\mathrm{8}^{{a}} +\mathrm{2}\right)}\approx.\mathrm{0277841315} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *