Menu Close

please-how-can-demonstred-sin-2x-cos-2x-2sin-2x-




Question Number 11594 by JAZAR last updated on 28/Mar/17
please how can demonstred   sin(2x)_ /cos(2x)=2sin(2x)
$${please}\:{how}\:{can}\:{demonstred}\: \\ $$$${sin}\left(\mathrm{2}{x}\underset{} {\right)}/{cos}\left(\mathrm{2}{x}\right)=\mathrm{2}{sin}\left(\mathrm{2}{x}\right) \\ $$
Answered by mrW1 last updated on 28/Mar/17
that′s not true!  sin (2x)/cos (2x)=tan (2x)≠2sin (2x)    but  sin (4x)/cos (2x)=2sin (2x)  since sin (4x)=2sin (2x)cos (2x)
$${that}'{s}\:{not}\:{true}! \\ $$$$\mathrm{sin}\:\left(\mathrm{2}{x}\right)/\mathrm{cos}\:\left(\mathrm{2}{x}\right)=\mathrm{tan}\:\left(\mathrm{2}{x}\right)\neq\mathrm{2sin}\:\left(\mathrm{2}{x}\right) \\ $$$$ \\ $$$${but} \\ $$$$\mathrm{sin}\:\left(\mathrm{4}{x}\right)/\mathrm{cos}\:\left(\mathrm{2}{x}\right)=\mathrm{2sin}\:\left(\mathrm{2}{x}\right) \\ $$$${since}\:\mathrm{sin}\:\left(\mathrm{4}{x}\right)=\mathrm{2sin}\:\left(\mathrm{2}{x}\right)\mathrm{cos}\:\left(\mathrm{2}{x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *