Menu Close

Question-132031




Question Number 132031 by mathlove last updated on 10/Feb/21
Commented by kaivan.ahmadi last updated on 10/Feb/21
p(x)=f(x)(x−1)+3=g(x)(x+1)+7  p(1)=3,p(−1)=7  p(x)=t(x)(x^2 −1)+k(x)  p(1)=k(1)⇒k(1)=3⇒(1,3)∈k  p(−1)=k(−1)=7⇒(−1,7)∈k  k(x)−3=((7−3)/(−1−1))(x−1)⇒k(x)−3=−2(x−1)  ⇒k(x)=−2x+5
$${p}\left({x}\right)={f}\left({x}\right)\left({x}−\mathrm{1}\right)+\mathrm{3}={g}\left({x}\right)\left({x}+\mathrm{1}\right)+\mathrm{7} \\ $$$${p}\left(\mathrm{1}\right)=\mathrm{3},{p}\left(−\mathrm{1}\right)=\mathrm{7} \\ $$$${p}\left({x}\right)={t}\left({x}\right)\left({x}^{\mathrm{2}} −\mathrm{1}\right)+{k}\left({x}\right) \\ $$$${p}\left(\mathrm{1}\right)={k}\left(\mathrm{1}\right)\Rightarrow{k}\left(\mathrm{1}\right)=\mathrm{3}\Rightarrow\left(\mathrm{1},\mathrm{3}\right)\in{k} \\ $$$${p}\left(−\mathrm{1}\right)={k}\left(−\mathrm{1}\right)=\mathrm{7}\Rightarrow\left(−\mathrm{1},\mathrm{7}\right)\in{k} \\ $$$${k}\left({x}\right)−\mathrm{3}=\frac{\mathrm{7}−\mathrm{3}}{−\mathrm{1}−\mathrm{1}}\left({x}−\mathrm{1}\right)\Rightarrow{k}\left({x}\right)−\mathrm{3}=−\mathrm{2}\left({x}−\mathrm{1}\right) \\ $$$$\Rightarrow{k}\left({x}\right)=−\mathrm{2}{x}+\mathrm{5} \\ $$$$ \\ $$
Commented by kaivan.ahmadi last updated on 10/Feb/21
k(1)=3,k(−1)=7  k(x)=ax+b   { ((x=1⇒a+b=3)),((x=−1⇒−a+b=7)) :}  ⇒b=5  ,a=−2  ⇒k(x)=−2x+5
$${k}\left(\mathrm{1}\right)=\mathrm{3},{k}\left(−\mathrm{1}\right)=\mathrm{7} \\ $$$${k}\left({x}\right)={ax}+{b} \\ $$$$\begin{cases}{{x}=\mathrm{1}\Rightarrow{a}+{b}=\mathrm{3}}\\{{x}=−\mathrm{1}\Rightarrow−{a}+{b}=\mathrm{7}}\end{cases}\:\:\Rightarrow{b}=\mathrm{5}\:\:,{a}=−\mathrm{2} \\ $$$$\Rightarrow{k}\left({x}\right)=−\mathrm{2}{x}+\mathrm{5} \\ $$
Commented by mathlove last updated on 11/Feb/21
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *