Menu Close

Let-k-be-non-negative-real-numbers-and-n-N-1-Prove-that-4-k-4-k-12-k-12-k-2n-n-1-k-2n-n-1-k-n-k-1-n-1-k-1-




Question Number 142710 by loveineq last updated on 04/Jun/21
Let k be non-negative real numbers and n ∈ N^+ ≥1.              Prove that               (((4−k)/(4+k)))(((12−k)/(12+k)))...[((2n(n+1)−k)/(2n(n+1)+k))] ≤ ((n+k+1)/((n+1)(k+1)))
$$\mathrm{Let}\:{k}\:\mathrm{be}\:\mathrm{non}-\mathrm{negative}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{and}\:{n}\:\in\:\mathrm{N}^{+} \geqslant\mathrm{1}.\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{4}−{k}}{\mathrm{4}+{k}}\right)\left(\frac{\mathrm{12}−{k}}{\mathrm{12}+{k}}\right)…\left[\frac{\mathrm{2}{n}\left({n}+\mathrm{1}\right)−{k}}{\mathrm{2}{n}\left({n}+\mathrm{1}\right)+{k}}\right]\:\leqslant\:\frac{{n}+{k}+\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({k}+\mathrm{1}\right)} \\ $$$$ \\ $$
Answered by loveineq last updated on 06/Jun/21

Leave a Reply

Your email address will not be published. Required fields are marked *