Question Number 142710 by loveineq last updated on 04/Jun/21
$$\mathrm{Let}\:{k}\:\mathrm{be}\:\mathrm{non}-\mathrm{negative}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{and}\:{n}\:\in\:\mathrm{N}^{+} \geqslant\mathrm{1}.\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{4}−{k}}{\mathrm{4}+{k}}\right)\left(\frac{\mathrm{12}−{k}}{\mathrm{12}+{k}}\right)…\left[\frac{\mathrm{2}{n}\left({n}+\mathrm{1}\right)−{k}}{\mathrm{2}{n}\left({n}+\mathrm{1}\right)+{k}}\right]\:\leqslant\:\frac{{n}+{k}+\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({k}+\mathrm{1}\right)} \\ $$$$ \\ $$
Answered by loveineq last updated on 06/Jun/21