Question Number 143296 by lapache last updated on 12/Jun/21
$${Montrer}\:{que} \\ $$$$\Gamma\left({n}\right)=\left({n}−\mathrm{1}\right)! \\ $$$$ \\ $$
Answered by Olaf_Thorendsen last updated on 12/Jun/21
$$\mathrm{By}\:\mathrm{definition}\:\Gamma\left({z}\right)\:=\:\int_{\mathrm{0}} ^{\infty} {t}^{{z}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$\mathrm{If}\:{z}\:=\:{n}\in\mathbb{N}\:: \\ $$$$\Gamma\left({n}\right)\:=\:\int_{\mathrm{0}} ^{\infty} {t}^{{n}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$\Gamma\left({n}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \mathrm{1}×{t}^{{n}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$\Gamma\left({n}\right)\:=\:\left[{t}.{t}^{{n}−\mathrm{1}} {e}^{−{t}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$−\int_{\mathrm{0}} ^{\infty} {t}\left[\left({n}−\mathrm{1}\right){t}^{{n}−\mathrm{2}} −{t}^{{n}−\mathrm{1}} \right]{e}^{−{t}} {dt} \\ $$$$\Gamma\left({n}\right)\:=\:−\left({n}−\mathrm{1}\right)\int_{\mathrm{0}} ^{\infty} {t}^{{n}−\mathrm{1}} {e}^{−{t}} {dt}+\int_{\mathrm{0}} ^{\infty} {t}^{{n}} {e}^{−{t}} {dt} \\ $$$$\Gamma\left({n}\right)\:=\:−\left({n}−\mathrm{1}\right)\Gamma\left({n}\right)+\Gamma\left({n}+\mathrm{1}\right) \\ $$$$\Gamma\left({n}+\mathrm{1}\right)\:=\:{n}\Gamma\left({n}\right) \\ $$$$\Gamma\left({n}+\mathrm{1}\right)\:=\:{n}\left({n}−\mathrm{1}\right)\Gamma\left({n}−\mathrm{1}\right) \\ $$$$… \\ $$$$\Gamma\left({n}+\mathrm{1}\right)\:=\:{n}!\Gamma\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\Gamma\left(\mathrm{1}\right)\:=\:\int_{\mathrm{0}} ^{\infty} {t}^{\mathrm{1}−\mathrm{1}} {e}^{−{t}} {dt}\:=\:\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {dt} \\ $$$$\Gamma\left(\mathrm{1}\right)\:=\:\left[−{e}^{−{t}} \right]_{\mathrm{0}} ^{\infty} \:=\:\mathrm{1} \\ $$$$ \\ $$$$\Gamma\left({n}+\mathrm{1}\right)\:=\:{n}!\Gamma\left(\mathrm{1}\right)\:=\:{n}!×\mathrm{1}\:=\:{n}! \\ $$$$ \\ $$$$\mathrm{and}\:\mathrm{of}\:\mathrm{course}\:\:\Gamma\left({n}\right)\:=\:\left({n}−\mathrm{1}\right)! \\ $$
Answered by Ar Brandon last updated on 12/Jun/21
$$\mathrm{I}=\Gamma\left(\mathrm{n}+\mathrm{1}\right)=\mathrm{n}! \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{t}^{\mathrm{n}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt},\:\mathrm{u}\left(\mathrm{t}\right)=\mathrm{t}^{\mathrm{n}} ,\:\mathrm{v}'\left(\mathrm{t}\right)=\mathrm{e}^{−\mathrm{t}} \\ $$$$\:\:=\left[−\mathrm{t}^{\mathrm{n}} \mathrm{e}^{−\mathrm{t}} +\mathrm{n}\int\mathrm{t}^{\mathrm{n}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt}\right]_{\mathrm{0}} ^{\infty} =\mathrm{n}\int_{\mathrm{0}} ^{\infty} \mathrm{t}^{\mathrm{n}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$\:\:=\mathrm{n}\left[−\mathrm{t}^{\mathrm{n}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} +\left(\mathrm{n}−\mathrm{1}\right)\int\mathrm{t}^{\mathrm{n}−\mathrm{2}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt}\right]_{\mathrm{0}} ^{\infty} =\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\int_{\mathrm{0}} ^{\infty} \mathrm{t}^{\mathrm{n}−\mathrm{2}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$\:\:=\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left[−\mathrm{t}^{\mathrm{n}−\mathrm{2}} \mathrm{e}^{−\mathrm{t}} +\left(\mathrm{n}−\mathrm{2}\right)\int\mathrm{t}^{\mathrm{n}−\mathrm{3}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt}\right]_{\mathrm{0}} ^{\infty} \\ $$$$\:\:=\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}−\mathrm{2}\right)\int_{\mathrm{0}} ^{\infty} \mathrm{t}^{\mathrm{n}−\mathrm{3}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$\:\:=\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}−\mathrm{2}\right)…\mathrm{3}×\mathrm{2}×\int_{\mathrm{0}} ^{\infty} \mathrm{te}^{−\mathrm{t}} \mathrm{dt}=\mathrm{n}! \\ $$
Answered by Dwaipayan Shikari last updated on 12/Jun/21
$$\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {t}^{{n}−\mathrm{1}} {dt}\:\:\:\:{e}^{−{t}} ={u}\Rightarrow−{e}^{−{t}} {dt}={du} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {t}\:{log}^{{n}−\mathrm{1}} \left({t}\right){dt}=\frac{\partial^{{n}−\mathrm{1}} }{\partial{a}^{{n}−\mathrm{1}} }\mid_{{a}=\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}} {dt}=\frac{\partial^{{n}−\mathrm{1}} }{\partial{a}^{{n}−\mathrm{1}} }\mid_{{a}=\mathrm{1}} .\frac{\mathrm{1}}{\left({a}+\mathrm{1}\right)} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({n}−\mathrm{1}\right)!}{\left({a}+\mathrm{1}\right)^{{n}} }\mid_{{a}=\mathrm{0}} =\left({n}−\mathrm{1}\right)! \\ $$