Menu Close

log-2-x-log-1-x-1-2-0-x-




Question Number 12489 by Joel577 last updated on 23/Apr/17
log_2  x + log_(1/x)  (1/2) ≥ 0  x = ?
$$\mathrm{log}_{\mathrm{2}} \:{x}\:+\:\mathrm{log}_{\mathrm{1}/{x}} \:\frac{\mathrm{1}}{\mathrm{2}}\:\geqslant\:\mathrm{0} \\ $$$${x}\:=\:? \\ $$
Answered by mrW1 last updated on 23/Apr/17
((ln x)/(ln 2))+((ln ((1/2)))/(ln ((1/x))))≥0  ((ln x)/(ln 2))+((ln 2)/(ln x))≥0  (((ln x)^2 +(ln 2)^2 )/((ln 2)(ln x)))≥0  (ln 2)(ln x)>0  ln x>0  ⇒x>1
$$\frac{\mathrm{ln}\:{x}}{\mathrm{ln}\:\mathrm{2}}+\frac{\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{ln}\:\left(\frac{\mathrm{1}}{{x}}\right)}\geqslant\mathrm{0} \\ $$$$\frac{\mathrm{ln}\:{x}}{\mathrm{ln}\:\mathrm{2}}+\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:{x}}\geqslant\mathrm{0} \\ $$$$\frac{\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} +\left(\mathrm{ln}\:\mathrm{2}\right)^{\mathrm{2}} }{\left(\mathrm{ln}\:\mathrm{2}\right)\left(\mathrm{ln}\:{x}\right)}\geqslant\mathrm{0} \\ $$$$\left(\mathrm{ln}\:\mathrm{2}\right)\left(\mathrm{ln}\:{x}\right)>\mathrm{0} \\ $$$$\mathrm{ln}\:{x}>\mathrm{0} \\ $$$$\Rightarrow{x}>\mathrm{1} \\ $$
Commented by Joel577 last updated on 24/Apr/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *