Menu Close

Calculus-n-1-1-n-k-1-n-k-2-




Question Number 143603 by mnjuly1970 last updated on 16/Jun/21
             .....Calculus.....          Ω:=Σ_(n=1) ^∞ (1/(n^k (1+n)))   (k≥ 2) ......
$$\:\:\:\:\:\:\:\:\:\:\:\:\:…..{Calculus}….. \\ $$$$\:\:\:\:\:\:\:\:\Omega:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{{k}} \left(\mathrm{1}+{n}\right)}\:\:\:\left({k}\geqslant\:\mathrm{2}\right)\:…… \\ $$
Answered by Dwaipayan Shikari last updated on 16/Jun/21
Ω:=Σ_(n=1) ^∞ (1/(n^k (n+1)))=∫_0 ^1 Li_k (x)dx  =[xLi_k (x)]_0 ^1 −∫_0 ^1 Σ_(n=1) ^∞ n ((x^(n−1) .x)/n^k )dx  =Li_k (1)−∫_0 ^1 Σ_(n=1) ^∞ (x^n /n^(k−1) )dx=Li_k (1)−∫_0 ^1 Li_(k−1) (1)dx  =Li_k (1)−Li_(k−1) (1)+Li_(k−2) (1)−...Li_2 (1)  =ζ(k)−ζ(k−1)+ζ(k−2)−ζ(k−3)+...+(π^2 /6)  if k odd  or ζ(k)−ζ(k−1)+...−(π^2 /6)  if k even
$$\Omega:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{{k}} \left({n}+\mathrm{1}\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} {Li}_{{k}} \left({x}\right){dx} \\ $$$$=\left[{xLi}_{{k}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}\:\frac{{x}^{{n}−\mathrm{1}} .{x}}{{n}^{{k}} }{dx} \\ $$$$={Li}_{{k}} \left(\mathrm{1}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}^{{k}−\mathrm{1}} }{dx}={Li}_{{k}} \left(\mathrm{1}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} {Li}_{{k}−\mathrm{1}} \left(\mathrm{1}\right){dx} \\ $$$$={Li}_{{k}} \left(\mathrm{1}\right)−{Li}_{{k}−\mathrm{1}} \left(\mathrm{1}\right)+{Li}_{{k}−\mathrm{2}} \left(\mathrm{1}\right)−…{Li}_{\mathrm{2}} \left(\mathrm{1}\right) \\ $$$$=\zeta\left({k}\right)−\zeta\left({k}−\mathrm{1}\right)+\zeta\left({k}−\mathrm{2}\right)−\zeta\left({k}−\mathrm{3}\right)+…+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:{if}\:{k}\:{odd} \\ $$$${or}\:\zeta\left({k}\right)−\zeta\left({k}−\mathrm{1}\right)+…−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:{if}\:{k}\:{even} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 16/Jun/21
     thank you so much...
$$\:\:\:\:\:{thank}\:{you}\:{so}\:{much}… \\ $$
Answered by mindispower last updated on 16/Jun/21
f(k)=Σ_(n≥1) (1/(n^k (n+1))),f(1)=1  f(k)+f(k−1)=Σ(1/n^k )=ζ(k),k≥1  (−1)^m f(m)+(−1)^m f(m−1)=(−1)^m ζ(m)  Σ_(m=2) ^k (−1)^m f(m)+(−1)^m f(m−1)=Σ_(m=2) ^k (−1)^m ζ(m)  (−1)^k f(k)+f(1)=Σ_(m=2) ^k (−1)^m ζ(m)  f(k)=(−1)^k Σ_(m=2) ^k (−1)^m ζ(m)+(−1)^(k−1) ,k≥2  f(1)=1
$${f}\left({k}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}^{{k}} \left({n}+\mathrm{1}\right)},{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${f}\left({k}\right)+{f}\left({k}−\mathrm{1}\right)=\Sigma\frac{\mathrm{1}}{{n}^{{k}} }=\zeta\left({k}\right),{k}\geqslant\mathrm{1} \\ $$$$\left(−\mathrm{1}\right)^{{m}} {f}\left({m}\right)+\left(−\mathrm{1}\right)^{{m}} {f}\left({m}−\mathrm{1}\right)=\left(−\mathrm{1}\right)^{{m}} \zeta\left({m}\right) \\ $$$$\underset{{m}=\mathrm{2}} {\overset{{k}} {\sum}}\left(−\mathrm{1}\right)^{{m}} {f}\left({m}\right)+\left(−\mathrm{1}\right)^{{m}} {f}\left({m}−\mathrm{1}\right)=\underset{{m}=\mathrm{2}} {\overset{{k}} {\sum}}\left(−\mathrm{1}\right)^{{m}} \zeta\left({m}\right) \\ $$$$\left(−\mathrm{1}\right)^{{k}} {f}\left({k}\right)+{f}\left(\mathrm{1}\right)=\underset{{m}=\mathrm{2}} {\overset{{k}} {\sum}}\left(−\mathrm{1}\right)^{{m}} \zeta\left({m}\right) \\ $$$${f}\left({k}\right)=\left(−\mathrm{1}\right)^{{k}} \underset{{m}=\mathrm{2}} {\overset{{k}} {\sum}}\left(−\mathrm{1}\right)^{{m}} \zeta\left({m}\right)+\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} ,{k}\geqslant\mathrm{2} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$
Commented by mnjuly1970 last updated on 16/Jun/21
 very nice ....
$$\:{very}\:{nice}\:…. \\ $$
Commented by mindispower last updated on 16/Jun/21
pleasur
$${pleasur} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *