Menu Close

f-x-x-3-10-lim-h-0-f-2-5h-f-2-3h-h-




Question Number 12630 by sin (x) last updated on 27/Apr/17
f(x)=(x^ −3)^(10)     lim_(h→0) ((f(2+5h)−f(2+3h))/h)=?
$${f}\left({x}\right)=\left({x}^{} −\mathrm{3}\right)^{\mathrm{10}} \\ $$$$ \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left(\mathrm{2}+\mathrm{5}{h}\right)−{f}\left(\mathrm{2}+\mathrm{3}{h}\right)}{{h}}=? \\ $$
Answered by ajfour last updated on 27/Apr/17
=lim_(h→0) ((5hf′(2)−3hf′(2))/h)  = 2f′(2) =2(10)(2−3)^9  = −20 .
$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{5}{hf}'\left(\mathrm{2}\right)−\mathrm{3}{hf}'\left(\mathrm{2}\right)}{{h}} \\ $$$$=\:\mathrm{2}{f}'\left(\mathrm{2}\right)\:=\mathrm{2}\left(\mathrm{10}\right)\left(\mathrm{2}−\mathrm{3}\right)^{\mathrm{9}} \:=\:−\mathrm{20}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *