Menu Close

the-circle-represents-a-farm-where-LK-is-symetric-axe-of-circle-such-as-M-of-this-circle-verifying-ML-2-4MK-2-0-with-LK-150m-calculate-the-radius-of-circle-please-help-me-




Question Number 78316 by mathocean1 last updated on 15/Jan/20
the circle represents a farm where  (LK) is symetric axe of circle such  as ∀ M of this circle verifying  ML^2 −4MK^2 =0  with LK=150m.  calculate the radius of circle.  please help me...
$$\mathrm{the}\:\mathrm{circle}\:\mathrm{represents}\:\mathrm{a}\:\mathrm{farm}\:\mathrm{where} \\ $$$$\left(\mathrm{LK}\right)\:\mathrm{is}\:\mathrm{symetric}\:\mathrm{axe}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{such} \\ $$$$\mathrm{as}\:\forall\:\mathrm{M}\:\mathrm{of}\:\mathrm{this}\:\mathrm{circle}\:\mathrm{verifying} \\ $$$$\mathrm{ML}^{\mathrm{2}} −\mathrm{4MK}^{\mathrm{2}} =\mathrm{0}\:\:\mathrm{with}\:\mathrm{LK}=\mathrm{150m}. \\ $$$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{circle}. \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}… \\ $$
Commented by mathocean1 last updated on 15/Jan/20
Commented by john santu last updated on 16/Jan/20
M(x,y) ,L(−15,0),K(0,0)  ML^2 =(x+15)^2 +y^2   MK^2 =x^2 +y^2   ML^2 =4MK^2   (x+15)^2 +y^2 =4x^2 +4y^2   x^2 +30x+225+y^2 =4x^2 +4y^2   3x^2 +3y^2 −30x−225=0  x^2 +y^2 −10x−225=0  a circle with center point (5,0)  radius = (√(25+225))=(√(250))=5(√(10)).
$${M}\left({x},{y}\right)\:,{L}\left(−\mathrm{15},\mathrm{0}\right),{K}\left(\mathrm{0},\mathrm{0}\right) \\ $$$${ML}^{\mathrm{2}} =\left({x}+\mathrm{15}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$${MK}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$${ML}^{\mathrm{2}} =\mathrm{4}{MK}^{\mathrm{2}} \\ $$$$\left({x}+\mathrm{15}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\mathrm{30}{x}+\mathrm{225}+{y}^{\mathrm{2}} =\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} −\mathrm{30}{x}−\mathrm{225}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{10}{x}−\mathrm{225}=\mathrm{0} \\ $$$${a}\:{circle}\:{with}\:{center}\:{point}\:\left(\mathrm{5},\mathrm{0}\right) \\ $$$${radius}\:=\:\sqrt{\mathrm{25}+\mathrm{225}}=\sqrt{\mathrm{250}}=\mathrm{5}\sqrt{\mathrm{10}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *