Menu Close

which-of-the-following-is-increasing-or-decreasing-a-u-n-n-n-n-b-u-n-4-n-3-n-1-c-u-n-2-n-n-2-




Question Number 78569 by Rio Michael last updated on 18/Jan/20
which of the following is increasing or decreasing  a.  u_n  = ((n!)/n^n )  b.  u_n = (4^n /(3^n +1))  c. u_n = (2^n /n^2 )
$${which}\:{of}\:{the}\:{following}\:{is}\:{increasing}\:{or}\:{decreasing} \\ $$$${a}.\:\:{u}_{{n}} \:=\:\frac{{n}!}{{n}^{{n}} } \\ $$$${b}.\:\:{u}_{{n}} =\:\frac{\mathrm{4}^{{n}} }{\mathrm{3}^{{n}} +\mathrm{1}} \\ $$$${c}.\:{u}_{{n}} =\:\frac{\mathrm{2}^{{n}} }{{n}^{\mathrm{2}} } \\ $$
Answered by mr W last updated on 18/Jan/20
a)  (u_(n+1) /u_n )=(((n+1)!n^n )/((n+1)^(n+1) n!))=((n/(n+1)))^n <1  ⇒decreasing  b)  (u_(n+1) /u_n )=(4^(n+1) /(3^(n+1) +1))×((3^n +1)/4^n )=1+((3^n +3)/(3×3^n +1))>1  ⇒increasing  c)  (u_(n+1) /u_n )=(2^(n+1) /((n+1)^2 ))×(n^2 /2^n )=2((n/(n+1)))^2 >1 upon n=3  ⇒increasing upon n=3
$$\left.{a}\right) \\ $$$$\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }=\frac{\left({n}+\mathrm{1}\right)!{n}^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} {n}!}=\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{{n}} <\mathrm{1} \\ $$$$\Rightarrow{decreasing} \\ $$$$\left.{b}\right) \\ $$$$\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }=\frac{\mathrm{4}^{{n}+\mathrm{1}} }{\mathrm{3}^{{n}+\mathrm{1}} +\mathrm{1}}×\frac{\mathrm{3}^{{n}} +\mathrm{1}}{\mathrm{4}^{{n}} }=\mathrm{1}+\frac{\mathrm{3}^{{n}} +\mathrm{3}}{\mathrm{3}×\mathrm{3}^{{n}} +\mathrm{1}}>\mathrm{1} \\ $$$$\Rightarrow{increasing} \\ $$$$\left.{c}\right) \\ $$$$\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }=\frac{\mathrm{2}^{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }×\frac{{n}^{\mathrm{2}} }{\mathrm{2}^{{n}} }=\mathrm{2}\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{\mathrm{2}} >\mathrm{1}\:{upon}\:{n}=\mathrm{3} \\ $$$$\Rightarrow{increasing}\:{upon}\:{n}=\mathrm{3} \\ $$$$ \\ $$
Commented by Rio Michael last updated on 19/Jan/20
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *