Menu Close

solve-2sec-2-x-2-2-3-secx-3-2-0-0-x-pi-4-




Question Number 132180 by bounhome last updated on 12/Feb/21
solve :  2sec^2 x+(2(√2)−3)secx−3(√2)=0 ; 0≤x≤(π/4)
$${solve}\:: \\ $$$$\mathrm{2}{sec}^{\mathrm{2}} {x}+\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\right){secx}−\mathrm{3}\sqrt{\mathrm{2}}=\mathrm{0}\:;\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}} \\ $$
Answered by benjo_mathlover last updated on 12/Feb/21
 3(√2) cos^2 x−(2(√2)−3)cos x−2=0   cos x = ((2(√2)−3 ± (√(17−12(√2) +24(√2))))/(6(√2)))  cos x = ((2(√2)−3 ± (√(17+12(√2))))/(6(√2)))  cos x = ((2(√2) −3 ± (√(17+2(√(72)))))/(6(√2)))  cos x = ((2(√2)−3± (3+2(√2) ))/(6(√2)))  cos x_1  = ((4(√2))/(6(√2))) ⇒cos x_1 =(2/3)    x_1  = arccos ((2/3))≈48.19° (rejected)  cos x_2 = −(1/( (√2))) → rejected
$$\:\mathrm{3}\sqrt{\mathrm{2}}\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}−\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\right)\mathrm{cos}\:\mathrm{x}−\mathrm{2}=\mathrm{0} \\ $$$$\:\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\:\pm\:\sqrt{\mathrm{17}−\mathrm{12}\sqrt{\mathrm{2}}\:+\mathrm{24}\sqrt{\mathrm{2}}}}{\mathrm{6}\sqrt{\mathrm{2}}} \\ $$$$\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\:\pm\:\sqrt{\mathrm{17}+\mathrm{12}\sqrt{\mathrm{2}}}}{\mathrm{6}\sqrt{\mathrm{2}}} \\ $$$$\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}\:−\mathrm{3}\:\pm\:\sqrt{\mathrm{17}+\mathrm{2}\sqrt{\mathrm{72}}}}{\mathrm{6}\sqrt{\mathrm{2}}} \\ $$$$\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\pm\:\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\:\right)}{\mathrm{6}\sqrt{\mathrm{2}}} \\ $$$$\mathrm{cos}\:\mathrm{x}_{\mathrm{1}} \:=\:\frac{\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{6}\sqrt{\mathrm{2}}}\:\Rightarrow\mathrm{cos}\:\mathrm{x}_{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\:\:\mathrm{x}_{\mathrm{1}} \:=\:\mathrm{arccos}\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\approx\mathrm{48}.\mathrm{19}°\:\left(\mathrm{rejected}\right) \\ $$$$\mathrm{cos}\:\mathrm{x}_{\mathrm{2}} =\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\rightarrow\:\mathrm{rejected}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *