Question Number 119 by novrya last updated on 25/Jan/15
$${Evaluate}\:\int\sqrt{{tan}\:\theta}\:{d}\theta \\ $$
Answered by rajabhay last updated on 06/Dec/14
$$\mathrm{tan}\:\theta={t}^{\mathrm{2}} \\ $$$$\mathrm{sec}^{\mathrm{2}} \theta\:{d}\theta=\mathrm{2}{t}\:{dt},\:\mathrm{sec}^{\mathrm{2}} \theta=\mathrm{1}+{t}^{\mathrm{4}} \\ $$$${d}\theta=\frac{\mathrm{2}{t}\:{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$$\int\sqrt{\mathrm{tan}\theta\:}\:{d}\theta=\int\frac{\mathrm{2}{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }\:{dt} \\ $$$$=\int\:\frac{{t}^{\mathrm{2}} +\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}+\int\:\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$$$=\int\:\frac{\mathrm{1}+\mathrm{1}/{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}/{t}^{\mathrm{2}} }\:{dt}+\int\:\frac{\mathrm{1}−\mathrm{1}/{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}/{t}^{\mathrm{2}} } \\ $$$$=\int\:\frac{\mathrm{1}+\mathrm{1}/{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}/{t}^{\mathrm{2}} −\mathrm{2}+\mathrm{2}}\:{dt}+\int\:\frac{\mathrm{1}−\mathrm{1}/{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}/{t}^{\mathrm{2}} +\mathrm{2}−\mathrm{2}} \\ $$$$=\int\:\frac{\mathrm{1}+\mathrm{1}/{t}^{\mathrm{2}} }{\left({t}−\mathrm{1}/{t}\right)^{\mathrm{2}} +\mathrm{2}}\:{dt}+\int\:\frac{\mathrm{1}−\mathrm{1}/{t}^{\mathrm{2}} }{\left({t}+\mathrm{1}/{t}\right)^{\mathrm{2}} −\mathrm{2}} \\ $$$${t}−\mathrm{1}/{t}={u}\:\mathrm{in}\:\mathrm{1st}\:\mathrm{intergral}\:\mathrm{and}\:{t}+\mathrm{1}/{t}={v}\:\mathrm{in}\:\mathrm{2nd} \\ $$$$\left(\mathrm{1}+\mathrm{1}/{t}^{\mathrm{2}} \right){dt}={du},\:\left(\mathrm{1}−\mathrm{1}/{t}^{\mathrm{2}} \right){dt}={dv} \\ $$$$\mathrm{So}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{now}\:\mathrm{equals} \\ $$$$\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{2}}\:+\int\:\frac{{dv}}{{v}^{\mathrm{2}} −\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{{u}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{ln}\:\mid\frac{{v}−\sqrt{\mathrm{2}}}{{v}+\sqrt{\mathrm{2}}}\mid+{C} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left({t}−\frac{\mathrm{1}}{{t}}\right)+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{ln}\:\mid\frac{{t}+\mathrm{1}/{t}−\sqrt{\mathrm{2}}}{{t}+\mathrm{1}/{t}+\sqrt{\mathrm{2}}}\mid+{C} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}}\right)+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{ln}\:\mid\frac{{t}^{\mathrm{2}} +\mathrm{1}−{t}\sqrt{\mathrm{2}}}{{t}^{\mathrm{2}} +\mathrm{1}+{t}\sqrt{\mathrm{2}}}\mid+{C} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\:\theta−\mathrm{1}}{\:\sqrt{\mathrm{2tan}\:\theta}}\right)+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{ln}\:\mid\frac{\mathrm{tan}\:\theta+\mathrm{1}−\sqrt{\mathrm{2tan}\theta}}{\mathrm{tan}\:\theta+\mathrm{1}+\sqrt{\mathrm{2tan}\theta}}\mid+{C} \\ $$
Commented by malwaan last updated on 07/Sep/16
$${greet} \\ $$
Commented by rajabhay last updated on 25/Sep/16
$$\mathrm{Thanks} \\ $$
Commented by peter frank last updated on 05/Jan/22
$$\mathrm{thanks} \\ $$