Question Number 213877 by issac last updated on 20/Nov/24 $$\mathrm{evaluate}. \\ $$$$\int_{−\pi} ^{\:+\pi} \:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3cos}^{\mathrm{2}} \left({z}\right)}\:\mathrm{d}{z} \\ $$$$\mathrm{real}\:\mathrm{analysis}\:\mathrm{method}: \\ $$$$\mathrm{complex}\:\mathrm{analysis}\:\mathrm{method}: \\ $$ Terms of Service Privacy…
Search Results for: complex
Question Number 213862 by issac last updated on 19/Nov/24 $$\mathrm{Help}\:\mathrm{me}…..!!!\:\::\left(\:\:\right. \\ $$$$\mathrm{complex}\:\mathrm{anaylsis}\:\mathrm{problem}.. \\ $$$${f}\left({z}\right)\:\mathrm{is}\:\mathrm{entire}\:\mathrm{in}\:\mathrm{path}\:{C}\: \\ $$$$\mathrm{entire}:\:\mathrm{Differantiable}\:\mathrm{complex}\:\mathrm{function} \\ $$$$\mathrm{mean}\:{f}\left({z}\right)\:\mathrm{satisfy}\:{f}\left({z}\right)={u}\left({x},{y}\right)+\boldsymbol{{i}}\centerdot{v}\left({x},{y}\right)\:\: \\ $$$$\frac{\partial{u}}{\partial{x}}=−\frac{\partial{v}}{\partial{y}}\:\mathrm{or}\:\:\frac{\partial{u}}{\partial{y}}=−\frac{\partial{v}}{\partial{x}}\:\left(\mathrm{couchy}-\mathrm{riemann}\right) \\ $$$$\mathrm{show}\:\mathrm{that}\:\int_{\:{C}} \:\frac{{f}\left({z}\right)}{{f}'\left({z}\right)}\:\mathrm{d}{z}=\mathrm{2}\pi\boldsymbol{{i}}\underset{{h}=\mathrm{1}} {\overset{{M}} {\sum}}\:{P}_{{h}}…
Question Number 213081 by issac last updated on 30/Oct/24 $$\mathrm{evaluate} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\:\:\:\frac{\mathrm{tanh}\left(\frac{\mathrm{1}}{\mathrm{2}}{z}\right)\mathrm{csch}\left({z}\right)}{{z}}\mathrm{d}{z} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Complex}\:\mathrm{integral} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Feynman}\:\mathrm{trick} \\ $$ Answered by Berbere last updated…
Question Number 209521 by mokys last updated on 12/Jul/24 $${find}\:{the}\:{integral}\:\int\:\frac{{dx}}{{x}^{\mathrm{4}} +{a}^{\mathrm{4}} }\:{by}\:{complex}\:{number}\:?\: \\ $$ Answered by mathmax last updated on 14/Jul/24 $${I}=\int\:\frac{{dx}}{{x}^{\mathrm{4}} −{i}^{\mathrm{2}} {a}^{\mathrm{4}} }=\int\frac{{dx}}{\left({x}^{\mathrm{2}}…
Question Number 208533 by alcohol last updated on 18/Jun/24 $${z}'\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left({z}+\frac{\mathrm{1}}{{z}}\right) \\ $$$${z}\:{and}\:{z}'\:{are}\:{complex}\:{numbers} \\ $$$${show}\:{that}\:{z}\:=\:\mathrm{2}{e}^{{i}\theta} \\ $$$${show}\:{that}\:{M}'\:{describes}\:{a}\:{conic}\:{section} \\ $$ Answered by Berbere last updated on 18/Jun/24…
Question Number 204157 by esmaeil last updated on 07/Feb/24 $${hello}\:{frinds} \\ $$$${I}\:{have}\:{a}\:{question} \\ $$$${when}\:{the}\:{most}\:{accurate}\:{math}\:{sofward} \\ $$$${it}\:{solves}\:{the}\:{most}\:{complex}\:{math} \\ $$$${problems}\:.{what}\:{is}\:{the}\:{need}\:{for}\:{us} \\ $$$${to}\:{spend}\:{hours}\:{to}\:{solve}\:{that}? \\ $$$$\left({Ofcourse}\:{i}\:{myself}\:{love}\:{math}\right) \\ $$$$\left({sorry}\:{i}'{m}\:{bad}\:{in}\:{english}\right) \\…
Question Number 201941 by ajfour last updated on 15/Dec/23 $${x}^{\mathrm{4}} −\frac{\mathrm{17}}{\mathrm{18}}{x}^{\mathrm{2}} +\frac{\mathrm{40}}{\mathrm{3}}{x}+\frac{\mathrm{1625}}{\mathrm{144}}=\mathrm{0} \\ $$$${Find}\:{roots}.\:\left({Two}\:{are}\:{real}\:{and}\:{two}\:\right. \\ $$$$\left.{are}\:{complex}\right)\bigstar \\ $$ Commented by Frix last updated on 17/Dec/23…
Question Number 200087 by universe last updated on 13/Nov/23 $$\:\:\mathrm{if}\:\omega\:\neq\:\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{aand}\:\mathrm{z}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{complex}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\:\mid{z}\mid\:=\:\mathrm{1}\:\mathrm{then} \\ $$$$\:\:\mid\frac{\mathrm{2}+\mathrm{3}\omega+\mathrm{4}{z}\omega^{\mathrm{2}} }{\mathrm{4}\omega+\mathrm{3}\omega^{\mathrm{2}} {z}+\mathrm{2}{z}}\mid=\:? \\ $$ Commented by Frix last updated on 13/Nov/23…
Question Number 197459 by MathematicalUser2357 last updated on 18/Sep/23 $$\mathrm{Is}\:\mathrm{complex}\:\mathrm{infinity}\:\mathrm{big}? \\ $$$$\overset{\sim} {\infty}=\infty\centerdot\left(\mathrm{1}+{i}\right) \\ $$$$\mathrm{Their}\:\mathrm{absolute}\:\mathrm{value}\:\mathrm{is}\:\mathrm{big} \\ $$$$\mid\overset{\sim} {\infty}\mid>\mid\infty\mid \\ $$ Commented by TheHoneyCat last updated…
Question Number 196423 by aaaspots last updated on 24/Aug/23 $$ \\ $$Consider a complex 4×4 full-rank matrix H. The QR decomposition and singular value decomposition…