Menu Close

Author: Tinku Tara

Find-amplitude-period-maximum-and-minimum-value-for-function-f-x-6-tan-1-5-x-8-

Question Number 213887 by efronzo1 last updated on 20/Nov/24 $$\:\:\:\mathrm{Find}\:\mathrm{amplitude},\:\mathrm{period},\:\mathrm{maximum}\: \\ $$$$\:\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{for}\:\mathrm{function} \\ $$$$\:\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{6}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{5}}\mathrm{x}\right)−\mathrm{8}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-213871

Question Number 213871 by 073 last updated on 19/Nov/24 Commented by Frix last updated on 20/Nov/24 $$\mathrm{Elliptic}\:\mathrm{Integral}: \\ $$$$\mathrm{4}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\sqrt{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:{x}\:+{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:{x}}\:{dx}\:=\mathrm{4}{a}\mathrm{E}\:\frac{{a}^{\mathrm{2}}…

Question-213861

Question Number 213861 by BaliramKumar last updated on 19/Nov/24 Answered by A5T last updated on 19/Nov/24 $${cotA}+{cotB}=\frac{\mathrm{1}}{{tanA}}+\frac{\mathrm{1}}{{tanB}}=\frac{{p}}{{tanAtanB}}={q} \\ $$$$\Rightarrow{tanAtanB}=\frac{{p}}{{q}} \\ $$$${cot}\left({A}+{B}\right)=\frac{\mathrm{1}}{{tan}\left({A}+{B}\right)}=\frac{\mathrm{1}−{tanAtanB}}{{tanA}+{tanB}}=\frac{\mathrm{1}−\frac{{p}}{{q}}}{{p}} \\ $$$$\Rightarrow{cot}\left({A}+{B}\right)=\frac{{q}−{p}}{{pq}} \\ $$…

Help-me-complex-anaylsis-problem-f-z-is-entire-in-path-C-entire-Differantiable-complex-function-mean-f-z-satisfy-f-z-u-x-y-i-v-x-y-u-x-v-y-or-u-y-v-x-couch

Question Number 213862 by issac last updated on 19/Nov/24 $$\mathrm{Help}\:\mathrm{me}…..!!!\:\::\left(\:\:\right. \\ $$$$\mathrm{complex}\:\mathrm{anaylsis}\:\mathrm{problem}.. \\ $$$${f}\left({z}\right)\:\mathrm{is}\:\mathrm{entire}\:\mathrm{in}\:\mathrm{path}\:{C}\: \\ $$$$\mathrm{entire}:\:\mathrm{Differantiable}\:\mathrm{complex}\:\mathrm{function} \\ $$$$\mathrm{mean}\:{f}\left({z}\right)\:\mathrm{satisfy}\:{f}\left({z}\right)={u}\left({x},{y}\right)+\boldsymbol{{i}}\centerdot{v}\left({x},{y}\right)\:\: \\ $$$$\frac{\partial{u}}{\partial{x}}=−\frac{\partial{v}}{\partial{y}}\:\mathrm{or}\:\:\frac{\partial{u}}{\partial{y}}=−\frac{\partial{v}}{\partial{x}}\:\left(\mathrm{couchy}-\mathrm{riemann}\right) \\ $$$$\mathrm{show}\:\mathrm{that}\:\int_{\:{C}} \:\frac{{f}\left({z}\right)}{{f}'\left({z}\right)}\:\mathrm{d}{z}=\mathrm{2}\pi\boldsymbol{{i}}\underset{{h}=\mathrm{1}} {\overset{{M}} {\sum}}\:{P}_{{h}}…

Question-213838

Question Number 213838 by ajfour last updated on 18/Nov/24 Commented by ajfour last updated on 18/Nov/24 $${A}\:{solid}\:{ball}\:{is}\:{released}\:{over}\:{a}\:{fixed} \\ $$$${cylindrical}\:{wedge}\:{as}\:{shown}.\:{Friction} \\ $$$${is}\:{sufficient}.\:{If}\:{just}\:{after}\:{the}\:{ball} \\ $$$${leaves}\:{the}\:{curved}\:{surface}\:{due}\:{to} \\ $$$${Normal}\:{reaction}\:{vanishing},\:{it}\:…