Question Number 227146 by Spillover last updated on 03/Jan/26 Answered by Kassista last updated on 03/Jan/26 $$ \\ $$$${I}\:=\:\int_{\:−\mathrm{2}} ^{\:\mathrm{2}\:} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{5}^{{x}} }\:{dx}\:\overset{{x}=−{u}} {\Rightarrow}\int_{\:\mathrm{2}} ^{\:−\mathrm{2}}…
Question Number 227157 by fateh last updated on 03/Jan/26 $$\mathrm{if}\:{x}=\mathrm{4}\:\mathrm{the}\:\mathrm{equation}\:“{f}\left({x}\right)={x}^{\mathrm{2}} ''\:\mathrm{what}'\mathrm{s} \\ $$$$\mathrm{the}\:\mathrm{graph}\:\mathrm{for}\:\mathrm{this}\:\mathrm{just}\:\mathrm{curious} \\ $$ Answered by fantastic2 last updated on 03/Jan/26 Answered by TonyCWX…
Question Number 227154 by gregori last updated on 03/Jan/26 $$ \left(\mathrm{202519}\right)^{\mathrm{2025}} \: \\ $$$$\: \\ $$ Answered by mahdipoor last updated on 03/Jan/26 $$\mathrm{202519}\equiv−\mathrm{2}\:\:\:\mathrm{mod}\left(\mathrm{17}\right) \\…
Question Number 227155 by zahraa last updated on 03/Jan/26 Answered by Ghisom_ last updated on 03/Jan/26 $${x}=\mathrm{2}{y}'+\mathrm{ln}\:{y}' \\ $$$$\mathrm{e}^{{x}} =\mathrm{e}^{\mathrm{2}{y}'} {y}' \\ $$$$\mathrm{2e}^{{x}} =\mathrm{e}^{\mathrm{2}{y}'} \mathrm{2}{y}'…
Question Number 227139 by Spillover last updated on 02/Jan/26 Answered by MrAjder last updated on 03/Jan/26 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}\overset{\left[\mathrm{1}\right]} {=}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{n}}\right) \\ $$$$\overset{\left[\mathrm{1}\right]} {=}\underset{{n}=\mathrm{1}}…
Question Number 227128 by Spillover last updated on 01/Jan/26 Answered by som(math1967) last updated on 01/Jan/26 $$\int_{\mathrm{0}\:\:} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{tanx}}}{\mathrm{1}+\sqrt{{tanx}}}{dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{tan}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}{dx}}{\mathrm{1}+\sqrt{{tan}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}} \\ $$$${I}=\int_{\mathrm{0}}…
Question Number 227113 by MrAjder last updated on 01/Jan/26 $$\int_{\mathrm{0}} ^{\mathrm{1}} \lfloor\mathrm{log}_{\mathrm{2}} \left({x}−\mathrm{2}^{\lfloor\mathrm{log}_{\mathrm{2}} {x}\rfloor} \right)\rfloor{dx} \\ $$ Answered by MrAjder last updated on 01/Jan/26 Terms…
Question Number 227131 by Devil001 last updated on 01/Jan/26 $$\int \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 227115 by MrAjder last updated on 01/Jan/26 $$\mathrm{prove}:\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}{i}\:\mathrm{sin}\frac{\mathrm{1}}{{i}}>\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)} \\ $$ Answered by MrAjder last updated on 01/Jan/26 $$\forall{i}\in\mathbb{Z}^{+} ,\mathrm{0}<\frac{\mathrm{1}}{{i}}\leq\mathrm{1}\Rightarrow\mathrm{sin}\frac{\mathrm{1}}{{i}}>\frac{\mathrm{1}}{{i}}−\frac{\mathrm{1}}{\mathrm{6}{i}^{\mathrm{3}} }\Rightarrow{i}\:\mathrm{sin}\frac{\mathrm{1}}{{i}}>\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6}{i}^{\mathrm{2}} }…
Question Number 227124 by BaliramKumar last updated on 01/Jan/26 $$\sqrt[{\mathrm{3}}]{\mathrm{2025}×\mathrm{2026}×\mathrm{2027}\:+\:\mathrm{2026}}\:=\:?\:\:\:\:\:\:\: \\ $$ Answered by TonyCWX last updated on 01/Jan/26 $$\sqrt[{\mathrm{3}}]{\left({x}−\mathrm{1}\right)\left({x}\right)\left({x}+\mathrm{1}\right)+{x}} \\ $$$$=\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −{x}+{x}} \\ $$$$=\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}}…