Menu Close

Author: Tinku Tara

Question-209161

Question Number 209161 by Spillover last updated on 02/Jul/24 Commented by klipto last updated on 03/Jul/24 $$ \\ $$$$\boldsymbol{\mathrm{F}}_{\boldsymbol{\mathrm{net}}} =−\left(\boldsymbol{\mathrm{F}}_{\mathrm{g}} +\boldsymbol{\mathrm{P}}\right) \\ $$$$\boldsymbol{\mathrm{ma}}=−\left(\boldsymbol{\mathrm{mg}}+\mathrm{0}.\mathrm{2}\boldsymbol{\mathrm{v}}^{\mathrm{2}} \right) \\…

Question-209129

Question Number 209129 by Adeyemi889 last updated on 02/Jul/24 Answered by A5T last updated on 02/Jul/24 $$\frac{{x}^{\mathrm{3}} +\mathrm{3}}{{x}^{\mathrm{2}} −\mathrm{1}}=\frac{{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)+{x}+\mathrm{3}}{{x}^{\mathrm{2}} −\mathrm{1}}={x}+\frac{{x}+\mathrm{3}}{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\frac{{x}+\mathrm{3}}{{x}^{\mathrm{2}} −\mathrm{1}}=\frac{{A}}{{x}−\mathrm{1}}+\frac{{B}}{{x}+\mathrm{1}}\Rightarrow{x}+\mathrm{3}=\left({A}+{B}\right){x}+{A}−{B}…

prove-curve-x-t-a-r-cos-t-a-2-r-2-2ar-cos-t-y-t-r-sin-t-a-2-r-2-2ar-cos-t-0-t-2pi-is-circle-find-center-amp-radius-

Question Number 209131 by mahdipoor last updated on 02/Jul/24 $${prove}\:: \\ $$$${curve}\:\begin{cases}{{x}\left({t}\right)=\frac{{a}+{r}.{cos}\left({t}\right)}{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar}.{cos}\left({t}\right)}}\\{{y}\left({t}\right)=\frac{{r}.{sin}\left({t}\right)}{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar}.{cos}\left({t}\right)}}\end{cases}\:\:\:\:\mathrm{0}\leqslant{t}\leqslant\mathrm{2}\pi \\ $$$${is}\:{circle}\:,\:{find}\:{center}\:\&\:{radius} \\ $$ Answered by Frix last updated…

Question-209121

Question Number 209121 by Spillover last updated on 02/Jul/24 Answered by Spillover last updated on 04/Jul/24 $${r}={r}_{\mathrm{0}} {e}^{{k}\theta} \\ $$$${In}\:{central}\:{force}\:{field}, \\ $$$${the}\:{angular}\:{momentum}\:{L}\:{is}\:{conserved} \\ $$$${L}={mr}^{\mathrm{2}} \frac{{d}\theta}{{dt}}\:\:\:\:\:{where}\:{m}={mass}\:{of}\:{the}\:{particle}…

Question-209123

Question Number 209123 by Spillover last updated on 02/Jul/24 Answered by A5T last updated on 02/Jul/24 $${max}\left(\mathrm{1000}{x}+\mathrm{600}{c}\right)\:{given}\:{c}\geqslant\mathrm{4}{x}\:{and}\:{x}+{c}\leqslant\mathrm{200} \\ $$$$\mathrm{4}{x}−{c}\leqslant\mathrm{0}\:{and}\:{x}+{c}\leqslant\mathrm{200}\Rightarrow{x}\leqslant\mathrm{40} \\ $$$$\Rightarrow{max}\left(\mathrm{1000}{x}+\mathrm{600}{c}\right)=\mathrm{1000}×\mathrm{40}+\mathrm{600}×\mathrm{160} \\ $$$$=\mathrm{136000}. \\ $$…