Menu Close

Author: Tinku Tara

The-cost-of-maintaining-a-school-is-partly-constant-and-partly-varies-as-the-number-of-students-With-50-students-the-cost-is-15705-and-with-40-students-the-cost-is-13305-If-the-fee-per-student-is-

Question Number 209065 by necx122 last updated on 01/Jul/24 $${The}\:{cost}\:{of}\:{maintaining}\:{a}\:{school}\:{is} \\ $$$${partly}\:{constant}\:{and}\:{partly}\:{varies}\:{as} \\ $$$${the}\:{number}\:{of}\:{students}.\:{With}\:\mathrm{50}\:{students} \\ $$$${the}\:{cost}\:{is}\:\$\mathrm{15705}\:{and}\:{with}\:\mathrm{40}\:{students} \\ $$$${the}\:{cost}\:{is}\:\$\mathrm{13305}.\:{If}\:{the}\:{fee}\:{per}\:{student} \\ $$$${is}\:\$\mathrm{360}.\mathrm{00},\:{what}\:{is}\:{the}\:{least}\:{number}\:{of} \\ $$$${students}\:{for}\:{which}\:{the}\:{school}\:{can}\:{be} \\ $$$${run}\:{without}\:{loss}? \\…

Question-209098

Question Number 209098 by Spillover last updated on 01/Jul/24 Answered by A5T last updated on 02/Jul/24 $$\mathrm{4}=\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}{\mathrm{2}{g}}\Rightarrow{sin}\theta=\frac{\sqrt{\mathrm{8}{g}}}{{v}_{\mathrm{0}} } \\ $$$${R}={v}_{\mathrm{0}} {cos}\theta×\mathrm{2}{t}={v}_{\mathrm{0}} \sqrt{\mathrm{1}−\frac{\mathrm{8}{g}}{{v}_{\mathrm{0}}…

Compare-8-and-8-

Question Number 209059 by hardmath last updated on 01/Jul/24 $$\mathrm{Compare}: \\ $$$$\mathrm{8}!\:\:\:\mathrm{and}\:\:\:\mathrm{8}!! \\ $$ Commented by mr W last updated on 01/Jul/24 $${if}\:\frac{{a}}{{b}}=\mathrm{1}\:\Rightarrow{a}={b} \\ $$$$\frac{\cancel{\mathrm{8}!}!}{\cancel{\mathrm{8}!}}=\mathrm{1}!=\mathrm{1}\:\Rightarrow\mathrm{8}!!=\mathrm{8}!\:\:\:\:\:\underset{\mid<>\mid}…

Question-209023

Question Number 209023 by Spillover last updated on 30/Jun/24 Commented by Spillover last updated on 01/Jul/24 $${let}\:{u}=\frac{\mathrm{4}{x}}{\mathrm{1}+\mathrm{5}{x}}\:\:\:\:\:\:\frac{{du}}{{dx}}=\frac{\mathrm{4}}{\left(\mathrm{1}+\mathrm{5}{x}\right)^{\mathrm{2}} } \\ $$$$\frac{{d}}{{dx}}\left(\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}{x}}{\mathrm{1}+\mathrm{5}{x}}\right)=\frac{\frac{\mathrm{4}}{\left(\mathrm{1}+\mathrm{5}{x}\right)^{\mathrm{2}} }}{\mathrm{1}+\left(\frac{\mathrm{4}{x}}{\mathrm{1}+\mathrm{5}{x}}\right)^{\mathrm{2}} }=\frac{\mathrm{4}}{\mathrm{1}+\mathrm{10}{x}+\mathrm{25}{x}^{\mathrm{2}} } \\…