Menu Close

Author: Tinku Tara

please-find-2-11001-666-mod-23-thanks-

Question Number 208980 by lmcp1203 last updated on 30/Jun/24 $${please}\:.\:\:\:\:\:{find}\:\:\mathrm{2}^{\mathrm{11001}^{\mathrm{666}} } {mod}\:\mathrm{23}\:\:\:\:\:\:\:\:{thanks}. \\ $$ Answered by A5T last updated on 30/Jun/24 $$\mathrm{2}^{\mathrm{11001}^{\mathrm{666}} } {mod}\left(\mathrm{23}\right)\equiv\mathrm{2}^{\mathrm{11001}^{\mathrm{666}} \left[{mod}\:\phi\left(\mathrm{23}\right)\right]}…

Question-209030

Question Number 209030 by Spillover last updated on 30/Jun/24 Answered by aleks041103 last updated on 30/Jun/24 $${moment}\:{generating}\:{function}\:{is} \\ $$$${m}\left({t}\right)=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{m}_{{k}} }{{k}!}{t}^{{k}} ={m}_{\mathrm{0}} +{m}_{\mathrm{1}} {t}+……

Question-209031

Question Number 209031 by Spillover last updated on 30/Jun/24 Answered by Spillover last updated on 07/Jul/24 $${f}\left({x}\right)=\begin{cases}{\frac{\mathrm{1}}{{n}}\:\:\:\:{x}=\mathrm{1},\mathrm{2},\mathrm{3},…..=\frac{\mathrm{1}}{{n}}\left[{e}^{{t}} +{e}^{\mathrm{2}{t}} +{e}^{\mathrm{3}{t}} +……..\right]}\\{\mathrm{0}\:\:{else}\:{where}}\end{cases} \\ $$$$\left({a}\right)\:{moment}\:{generating}\:{function} \\ $$$${M}_{{x}} \left({t}\right)={E}\left({e}^{{tx}}…