Question Number 220873 by Spillover last updated on 20/May/25 Answered by mr W last updated on 20/May/25 $$\mathrm{18}!×\mathrm{19}×\mathrm{18}=\mathrm{18}×\mathrm{19}! \\ $$$${or} \\ $$$$\mathrm{20}!−\mathrm{2}×\mathrm{19}!=\mathrm{18}×\mathrm{19}! \\ $$ Commented…
Question Number 220874 by Spillover last updated on 20/May/25 Commented by Spillover last updated on 20/May/25 Commented by Spillover last updated on 20/May/25 $${its}\:{n}!\:\:{not}\:{n} \\…
Question Number 220869 by fantastic last updated on 20/May/25 $${Find}\:{the}\:{maximum}\:{value}\:{of}\:{x}^{\mathrm{2}} {y}^{\mathrm{3}} {z}^{\mathrm{4}} \:{subject}\:{to}\:{the}\:{condition}\:{x}+{y}+{z}=\mathrm{18} \\ $$ Commented by mr W last updated on 20/May/25 $${x},\:{y},\:{z}\:\in{N}\:\:\:{or}\:{Z}\:{or}\:{R}\:? \\…
Question Number 220825 by fantastic last updated on 19/May/25 Answered by mr W last updated on 20/May/25 $$\frac{\mathrm{20}}{\mathrm{180}}×\mathrm{72}=\mathrm{8} \\ $$ Commented by mr W last…
Question Number 220810 by Rojarani last updated on 19/May/25 Commented by Ghisom last updated on 19/May/25 $$\mathrm{without}\:\mathrm{further}\:\mathrm{information}\:\mathrm{we}\:\mathrm{can}\:\mathrm{let} \\ $$$${a}={b}={c}={k}\:\Rightarrow \\ $$$${k}=\frac{\mathrm{2}^{\mathrm{1}/\mathrm{3}} −\mathrm{1}}{\mathrm{27}}\:\Rightarrow \\ $$$${a}+{b}+{c}=\mathrm{3}{k}=\frac{\mathrm{2}^{\mathrm{1}/\mathrm{3}} −\mathrm{1}}{\mathrm{9}}…
Question Number 220811 by aniqah last updated on 19/May/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 220820 by SdC355 last updated on 19/May/25 Commented by SdC355 last updated on 19/May/25 $$\mathrm{Q220800} \\ $$ Answered by MathematicalUser2357 last updated on…
Question Number 220790 by SdC355 last updated on 19/May/25 $$\mathrm{Complex}\:\mathrm{integral} \\ $$$$\oint_{\:\mathrm{C}} \:\frac{\mathrm{d}{z}}{{z}^{\mathrm{3}} +\mathrm{1}}=??\:,\:{C};{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4} \\ $$$$\oint_{\:{C}} \:\frac{\mathrm{1}}{{z}}{e}^{{z}} \:\mathrm{d}{z},\:{C};\begin{cases}{{y}=\mathrm{1}\:,\:−\mathrm{1}\leq{x}\leq\mathrm{1}}\\{{y}=−\mathrm{1}\:,\:−\mathrm{1}\leq{x}\leq\mathrm{1}}\\{{x}=\mathrm{1}\:,\:−\mathrm{1}\leq{y}\leq\mathrm{1}}\\{{x}=−\mathrm{1}\:,\:−\mathrm{1}\leq{y}\leq\mathrm{1}}\end{cases}\: \\ $$ Answered by vnm…
Question Number 220791 by Nicholas666 last updated on 19/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{x}^{\mathrm{2}} }{\boldsymbol{\mathrm{sin}}\:{x}\:+\:\mathrm{1}}\:{dx} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 220800 by SdC355 last updated on 19/May/25 $$\mathrm{To}\:\mathrm{Tinkutara} \\ $$$$\begin{bmatrix}{\mathrm{a}}\\{\mathrm{b}}\end{bmatrix},\begin{vmatrix}{\mathrm{a}}\\{\mathrm{b}}\end{vmatrix},\begin{pmatrix}{\mathrm{a}}\\{\mathrm{b}}\end{pmatrix}\:,\begin{cases}{\mathrm{a}}\\{\mathrm{b}}\end{cases}\:,\:\:\left.\begin{matrix}{\mathrm{a}}\\{\mathrm{b}}\end{matrix}\right\}\:,\begin{array}{|c|c|}{\mathrm{abcdefg}}\\{\mathrm{pqrstvw}}\\\hline\end{array}\:\mathrm{is}\:\mathrm{work}\:\mathrm{well} \\ $$$$\mathrm{but}\:\mathrm{invisible}\:\mathrm{line}\:\mathrm{matrix}\left(?\right)\:\mathrm{dosen}'\mathrm{t}\:\mathrm{work} \\ $$$$\mathrm{pls}\:\mathrm{Fix}\:\mathrm{bug} \\ $$ Answered by SdC355 last updated on 19/May/25…