Menu Close

Author: Tinku Tara

a-n-numbers-series-If-S-16-S-13-S-106-S-103-Find-3a-3-4a-4-5a-5-2a-12-

Question Number 208218 by hardmath last updated on 07/Jun/24 $$\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:\:\mathrm{numbers}\:\mathrm{series} \\ $$$$\mathrm{If}\:\:\mathrm{S}_{\mathrm{16}} \:−\:\mathrm{S}_{\mathrm{13}} \:\:=\:\:\mathrm{S}_{\mathrm{106}} \:−\:\mathrm{S}_{\mathrm{103}} \\ $$$$\mathrm{Find}:\:\:\:\:\frac{\mathrm{3a}_{\mathrm{3}} \:+\:\mathrm{4a}_{\mathrm{4}} \:+\:\mathrm{5a}_{\mathrm{5}} }{\mathrm{2a}_{\mathrm{12}} }\:\:=\:\:? \\ $$ Commented…

Find-1-03-200-

Question Number 208187 by hardmath last updated on 07/Jun/24 $$\mathrm{Find}:\:\:\:\mathrm{1},\mathrm{03}^{\mathrm{200}} \:=\:? \\ $$ Answered by Ghisom last updated on 07/Jun/24 $$=\mathrm{10}^{\mathrm{200log}\:\mathrm{1}.\mathrm{03}} \approx\mathrm{10}^{\mathrm{200}×.\mathrm{012837}} \approx\mathrm{10}^{\mathrm{2}.\mathrm{5675}} \approx\mathrm{369}.\mathrm{36} \\…

If-1-R-1-R-1-1-R-2-R-1-R-2-gt-0-and-R-1-R-2-C-Constant-then-prove-that-R-will-be-maximum-when-R-1-R-2-

Question Number 208215 by MATHEMATICSAM last updated on 07/Jun/24 $$\mathrm{If}\:\frac{\mathrm{1}}{\mathrm{R}}\:=\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{1}} }\:+\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{2}} }\:\left[\mathrm{R}_{\mathrm{1}} ,\:\mathrm{R}_{\mathrm{2}} \:>\:\mathrm{0}\right]\:\mathrm{and}\: \\ $$$$\mathrm{R}_{\mathrm{1}} \:+\:\mathrm{R}_{\mathrm{2}} \:=\:\mathrm{C}\:\left(\mathrm{Constant}\right)\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{R}\:\mathrm{will}\:\mathrm{be}\:\mathrm{maximum}\:\mathrm{when}\:\mathrm{R}_{\mathrm{1}} \:=\:\mathrm{R}_{\mathrm{2}} . \\ $$ Answered…

Find-the-value-of-the-folloing-integral-determinant-0-2-1-1-cosx-1-3-dx-

Question Number 208176 by mnjuly1970 last updated on 07/Jun/24 $$ \\ $$$$\:\:\:\:\:\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{the}} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{folloing}}\:\boldsymbol{{integral}}. \\ $$$$\:\:\:\:\:\:\: \\ $$$$\begin{array}{|c|}{\:\:\:\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} \:\frac{\:\mathrm{1}}{\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\:\boldsymbol{{cosx}}}}\:\boldsymbol{{dx}}\:=\:?\:\:}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\: \\ $$ Commented…

x-3-5-2x-2-2-dx-

Question Number 208205 by efronzo1 last updated on 07/Jun/24 $$\:\:\:\int\:\left({x}^{\mathrm{3}} .\:\mathrm{5}^{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}} \:\right)\:{dx}\:=? \\ $$ Answered by Frix last updated on 07/Jun/24 $$\int{x}^{\mathrm{3}} \mathrm{5}^{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}}…

Question-208199

Question Number 208199 by efronzo1 last updated on 07/Jun/24 Answered by Frix last updated on 07/Jun/24 $${y}=\sqrt{\mathrm{18}+\mathrm{3}{x}−{x}^{\mathrm{2}} }\:\mathrm{is}\:\mathrm{a}\:\mathrm{semi}\:\mathrm{circle}\:\mathrm{with}\:{r}=\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\sqrt{{x}+\mathrm{3}}+\sqrt{\mathrm{6}−{x}}\:\mathrm{has}\:\mathrm{the}\:\mathrm{maximum}\:\begin{pmatrix}{\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{3}\sqrt{\mathrm{2}}}\end{pmatrix} \\ $$$$\mathrm{We}\:\mathrm{have}\:\mathrm{2}\:\mathrm{solutions}\:\mathrm{for}\:\mathrm{0}\leqslant{m}<\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{4}}\:\mathrm{and} \\ $$$$\mathrm{exactly}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{at}\:{m}=\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{4}} \\…

X-Y-and-Z-are-points-on-the-sides-AB-BC-and-AC-of-the-triangle-ABC-such-that-AX-XB-4-3-BY-YC-2-3-CZ-ZA-2-1-Find-the-ratio-of-the-area-of-the-triangle-XYZ-to-that-of-triangle-ABC-

Question Number 208158 by necx122 last updated on 06/Jun/24 $${X},\:{Y}\:{and}\:{Z}\:{are}\:{points}\:{on}\:{the}\:{sides}\:{AB}, \\ $$$${BC}\:{and}\:{AC}\:{of}\:{the}\:{triangle}\:{ABC},\:{such} \\ $$$${that}\:{AX}:{XB}\:=\mathrm{4}:\mathrm{3},\:{BY}:{YC}=\mathrm{2}:\mathrm{3},\: \\ $$$${CZ}:{ZA}=\mathrm{2}:\mathrm{1}.\:{Find}\:{the}\:{ratio}\:{of}\:{the}\:{area} \\ $$$${of}\:{the}\:{triangle}\:{XYZ}\:{to}\:{that}\:{of}\:{triangle} \\ $$$${ABC}. \\ $$ Answered by mr…