Question Number 213398 by issac last updated on 04/Nov/24 $$\mathrm{One}\:\mathrm{simple}\:\mathrm{Equation} \\ $$$$\mathrm{pls}\:\mathrm{prove}\:\mathrm{this}\:\mathrm{property} \\ $$$$\underset{{j}=\mathrm{1}} {\overset{{N}} {\sum}}\:{a}_{{j}} \centerdot\underset{{k}=\mathrm{1}} {\overset{{M}} {\sum}}{b}_{{k}} =\underset{{j}=\mathrm{1}} {\overset{{N}} {\sum}}\centerdot\underset{{k}=\mathrm{1}} {\overset{{M}} {\sum}}\:{a}_{{j}} {b}_{{k}}…
Question Number 213340 by Spillover last updated on 03/Nov/24 Commented by mr W last updated on 03/Nov/24 $${no}\:{unique}\:{solution}\:{possible}! \\ $$ Commented by Spillover last updated…
Question Number 213341 by Spillover last updated on 03/Nov/24 Commented by mr W last updated on 03/Nov/24 $${no}\:{unique}\:{solution}\:{possible}! \\ $$ Commented by Spillover last updated…
Question Number 213374 by hardmath last updated on 03/Nov/24 $$\mathrm{Find}:\:\:\:\frac{\mathrm{1}\:−\:\mathrm{2}\:\sqrt[{\mathrm{4}}]{\mathrm{5}}\:+\:\sqrt{\mathrm{5}}}{\left(\sqrt{\mathrm{3}}\:−\:\sqrt[{\mathrm{4}}]{\mathrm{5}}\right)^{\mathrm{2}} }\:=\:? \\ $$ Commented by Frix last updated on 03/Nov/24 $$\frac{\mathrm{29}−\mathrm{15}\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{8}−\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{5}^{\frac{\mathrm{3}}{\mathrm{4}}} +\frac{\mathrm{13}−\mathrm{7}\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}}} −\frac{\mathrm{18}−\mathrm{11}\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$…
Question Number 213342 by Spillover last updated on 03/Nov/24 Commented by MrGaster last updated on 03/Nov/24 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{array}{|c|}{\:\:\int{H}_{{x}} ^{\sqrt{\pi}} {dx}=\frac{{H}_{{x}} ^{\sqrt{\pi}+\mathrm{1}} }{\:\sqrt{\pi}+\mathrm{1}}+{C}\:\:}\\\hline\end{array} \\ $$ Terms of…
Question Number 213343 by Spillover last updated on 03/Nov/24 Answered by MrGaster last updated on 03/Nov/24 $$=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{sin}\left({x}\right)\mathrm{sin}\left({y}\right)\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}\left({z}\right)}{{x}+{y}+{z}}{dx}\right){dydx} \\ $$$$=\int_{\mathrm{0}}…
Question Number 213369 by Frix last updated on 03/Nov/24 $$\mathrm{Old}\:\mathrm{question}\:\mathrm{203835} \\ $$$$\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{6}−\sqrt{\mathrm{25}{x}^{\mathrm{4}} −\mathrm{50}{x}^{\mathrm{2}} +\mathrm{36}}}}{\:\sqrt{\mathrm{5}}}{dx}=? \\ $$ Commented by MathematicalUser2357 last updated on 06/Nov/24…
Question Number 213371 by otchoumou last updated on 03/Nov/24 Commented by otchoumou last updated on 03/Nov/24 $${aider} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 213376 by RoseAli last updated on 03/Nov/24 $$\int\frac{{dx}}{\:\sqrt{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }} \\ $$ Commented by Frix last updated on 03/Nov/24 $$\mathrm{Sometimes}\:\mathrm{just}\:\mathrm{use}\:\mathrm{your}\:\mathrm{brain}\:\&\:\mathrm{experience} \\ $$$$\frac{{d}}{{dx}}\left[\frac{{g}\left({x}\right)}{\:\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}}\right]=\frac{{g}'\left({x}\right)\left(\mathrm{4}{x}^{\mathrm{2}}…
Question Number 213276 by thetpainghtun_111 last updated on 02/Nov/24 $$\mathrm{y}^{\mathrm{2}} \:=\:−\:\mathrm{4px} \\ $$$$\:\mathrm{At}\:\left(−\frac{\mathrm{1}}{\mathrm{3}},\mathrm{1}\right)\rightarrow\:\mathrm{1}=\:−\mathrm{4p}\:\left(−\:\frac{\mathrm{1}}{\mathrm{3}}\:−\:\mathrm{h}\right) \\ $$$$\:\mathrm{At}\:\left(−\frac{\mathrm{5}}{\mathrm{3}},\mathrm{2}\right)\rightarrow\:\mathrm{4}\:=\:−\mathrm{4p}\:\left(−\:\frac{\mathrm{5}}{\mathrm{3}}\:−\:\mathrm{h}\right) \\ $$$$\:\:\:\:\:\mathrm{4}\:=\:\frac{−\:\frac{\mathrm{5}}{\mathrm{3}}\:−\:\mathrm{h}}{−\:\frac{\mathrm{1}}{\mathrm{3}}\:−\:\mathrm{h}} \\ $$$$\:\:\:\:\frac{\mathrm{4}}{\mathrm{3}}\:+\:\mathrm{4h}\:=\:\frac{\mathrm{5}}{\mathrm{3}}\:+\:\mathrm{h}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3h}\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{h}\:=\:\frac{\mathrm{1}}{\mathrm{9}} \\ $$…