Question Number 214317 by muallimRiyoziyot last updated on 05/Dec/24 $${x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{11}{x}^{\mathrm{2}} +{x}−\mathrm{12}={f}\left({x}\right)×{g}\left({x}\right) \\ $$$${f}\left({x}\right)=?\:\:\:\:{g}\left({x}\right)=? \\ $$ Answered by A5T last updated on 05/Dec/24 $${x}^{\mathrm{4}}…
Question Number 214335 by depressiveshrek last updated on 05/Dec/24 $$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:{k}\:\mathrm{does}\:\mathrm{the}\:\mathrm{equation} \\ $$$${e}^{{kx}} =\mathrm{3}\sqrt{{x}}\:\mathrm{have}\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{in}\:\mathbb{R}? \\ $$ Answered by mr W last updated on 06/Dec/24 $${y}={e}^{{kx}} \:{and}\:{y}=\mathrm{3}\sqrt{{x}}\:{should}\:{have}\:{only}…
Question Number 214319 by golsendro last updated on 05/Dec/24 $$\:\:\:\:\mathrm{f}\left(\frac{\mathrm{10x}+\mathrm{3}}{\mathrm{10x}−\mathrm{3}}\:\right)=\:\frac{\mathrm{10}}{\mathrm{3}}\:\mathrm{x} \\ $$$$\:\:\:\mathrm{f}\left(\mathrm{4}\right).\mathrm{f}\left(\mathrm{6}\right).\mathrm{f}\left(\mathrm{8}\right).\mathrm{f}\left(\mathrm{10}\right)…\mathrm{f}\left(\mathrm{2024}\right)=? \\ $$ Answered by A5T last updated on 05/Dec/24 $$\frac{\mathrm{10}{y}+\mathrm{3}}{\mathrm{10}{y}−\mathrm{3}}={x}\Rightarrow\mathrm{10}{y}+\mathrm{3}=\mathrm{10}{xy}−\mathrm{3}{x} \\ $$$${y}=\frac{−\mathrm{3}−\mathrm{3}{x}}{\mathrm{10}−\mathrm{10}{x}} \\…
Question Number 214329 by malwan last updated on 05/Dec/24 $${what}\:{is}\:{the}\:{coefficient}\:{of} \\ $$$${x}^{\mathrm{50}\:\:} \:{in} \\ $$$$\left(\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +…+\mathrm{101}{x}^{\mathrm{100}} \right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +…+{x}^{\mathrm{25}} \right) \\ $$ Answered by mr W…
Question Number 214326 by mathlove last updated on 05/Dec/24 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{4}}]{{x}}−\sqrt[{\mathrm{6}}]{{x}}}{\:\sqrt[{\mathrm{4}}]{{x}}+\sqrt[{\mathrm{6}}]{{x}}}=? \\ $$ Answered by malwan last updated on 05/Dec/24 $${put}\:{y}={x}^{\mathrm{12}} \\ $$$$\underset{{y}\rightarrow\infty} {{lim}}\:\frac{{y}^{\mathrm{3}} −{y}^{\mathrm{2}}…
Question Number 214321 by MathematicsExpert last updated on 05/Dec/24 $$\mathrm{15}{x}\left(\frac{\mathrm{6}{x}}{\mathrm{10}}+\frac{\mathrm{12}{x}}{\mathrm{20}}+\frac{\mathrm{15}{x}}{\mathrm{30}}+…+\frac{\mathrm{60}{x}}{\mathrm{100}}\right)=\mathrm{160} \\ $$$$\mathrm{solve}\:\mathrm{for}\:{x} \\ $$ Answered by MATHEMATICSAM last updated on 06/Dec/24 $$\mathrm{15}{x}\left(\frac{\mathrm{6}{x}}{\mathrm{10}}\:+\:\frac{\mathrm{12}{x}}{\mathrm{20}}\:+\:\frac{\mathrm{15}{x}}{\mathrm{30}}\:+\:…\:+\:\frac{\mathrm{60}{x}}{\mathrm{100}}\right)\:=\:\mathrm{160} \\ $$$$\Rightarrow\:\mathrm{15}{x}\left(\frac{\mathrm{3}{x}}{\mathrm{5}}\:+\:\frac{\mathrm{3}{x}}{\mathrm{5}}\:+\:\frac{\mathrm{3}{x}}{\mathrm{5}}\:+\:…\:+\:\frac{\mathrm{3}{x}}{\mathrm{5}}\right)\:=\:\mathrm{160} \\…
Question Number 214322 by MathematicsExpert last updated on 05/Dec/24 $$\mathrm{find}\:\mathrm{the}\:\mathrm{errors} \\ $$$$\mathrm{7}{x}+\mathrm{4}=\mathrm{10}{x}−\mathrm{6} \\ $$$$\mathrm{7}{x}+\mathrm{4}−\mathrm{10}{x}=\mathrm{10}{x}−\mathrm{6}−\mathrm{10}{x} \\ $$$$−\mathrm{3}{x}+\mathrm{4}=−\mathrm{6} \\ $$$$−\mathrm{3}{x}+\mathrm{4}+\mathrm{6}=−\mathrm{6}+\mathrm{6} \\ $$$$−\mathrm{3}{x}+\mathrm{10}=\mathrm{0} \\ $$$$−\mathrm{3}{x}+\mathrm{10}−\mathrm{10}=\mathrm{0}−\mathrm{10} \\ $$$$−\mathrm{3}{x}=−\mathrm{10} \\…
Question Number 214301 by efronzo1 last updated on 04/Dec/24 $$\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{sin}\:\mathrm{x}\right)+\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{cos}\:\mathrm{x}\right)\:\mathrm{dx}\:=? \\ $$ Commented by Frix last updated on 04/Dec/24 $$\mathrm{Should}\:\mathrm{be}\:\frac{\pi}{\mathrm{2}} \\…
Question Number 214302 by universe last updated on 04/Dec/24 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}\left(\mathrm{4}{n}−\mathrm{1}\right)^{\mathrm{2}} }=\:? \\ $$ Answered by MrGaster last updated on 24/Dec/24 $$\left(\mathrm{4}{n}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{16}{n}^{\mathrm{2}} −\mathrm{8}{n}+\mathrm{1}…
Question Number 214297 by ajfour last updated on 04/Dec/24 Commented by ajfour last updated on 04/Dec/24 $${the}\:{tangents}\:{are}\:{at}\:{right}\:{angles}\:{to} \\ $$$${one}\:{another}\:{and}\:{corner}\:{maynot}\:{be} \\ $$$${at}\:{semicircle}\:{centre}. \\ $$ Commented by…