Menu Close

Author: Tinku Tara

Question-220247

Question Number 220247 by Rojarani last updated on 10/May/25 Answered by Rasheed.Sindhi last updated on 11/May/25 $${x}=\frac{\mathrm{42}+\sqrt{\mathrm{63}}\:+\mathrm{3}\sqrt{\mathrm{91}}}{\mathrm{7}+\mathrm{7}\sqrt{\mathrm{7}}\:+\mathrm{7}\sqrt{\mathrm{13}}\:+\sqrt{\mathrm{91}}\:}\wedge\:{x}^{\mathrm{6}} +\mathrm{40}{x}−{k}=\mathrm{0}\:;\:{k}=? \\ $$$$\: \\ $$$${x}=\frac{\mathrm{42}+\mathrm{3}\sqrt{\mathrm{7}}\:+\mathrm{3}\sqrt{\mathrm{91}}\:}{\mathrm{7}\left(\mathrm{1}+\sqrt{\mathrm{7}}\:\right)+\sqrt{\mathrm{91}}\:\left(\sqrt{\mathrm{7}}\:+\mathrm{1}\right)} \\ $$$${x}=\frac{\cancel{\sqrt{\mathrm{7}}\:}\left(\mathrm{6}\sqrt{\mathrm{7}}+\mathrm{3}\:+\mathrm{3}\sqrt{\mathrm{13}}\:\right.}{\:\cancel{\sqrt{\mathrm{7}}\:\:}\left(\mathrm{1}+\sqrt{\mathrm{7}}\:\right)\left(\sqrt{\mathrm{7}}\:+\sqrt{\mathrm{13}}\:\right)}×\frac{\:\:\left(\mathrm{1}−\sqrt{\mathrm{7}}\:\right)\left(\sqrt{\mathrm{7}}\:−\sqrt{\mathrm{13}}\:\right)}{\:\:\:\left(\mathrm{1}−\sqrt{\mathrm{7}}\:\right)\left(\sqrt{\mathrm{7}}\:−\sqrt{\mathrm{13}}\:\right)} \\…

Question-220307

Question Number 220307 by Tawa11 last updated on 10/May/25 Answered by fantastic last updated on 10/May/25 Commented by fantastic last updated on 10/May/25 $${Here}\:\Box{ABCD}\:={DC}×{AN}\:.{As}\:{the}\:{opposite}\:{sides}\:{of}\:{a}\:{parallelogram}\:{is}\:{equal}\:{so}\:{AB}={DC} \\…

lim-t-0-C-1-J-t-C-2-Y-t-H-t-C-1-J-t-C-2-Y-t-R-J-z-Bessel-function-First-kind-Y-z-Bessel-function-Second-Kind-H-z-Struve-H-function-

Question Number 220269 by SdC355 last updated on 10/May/25 $$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)+\boldsymbol{\mathrm{H}}_{\nu} \left({t}\right)}{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)}=?? \\ $$$$\nu\in\mathbb{R} \\ $$$${J}_{\nu} \left({z}\right)\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{First}\:\mathrm{kind}…