Menu Close

Author: Tinku Tara

Q-The-density-of-an-object-of-mass-M-is-and-the-density-of-the-air-is-the-mass-of-of-the-object-is-measured-with-the-help-of-a-metal-weight-of-mass-m-the-density-of-the-metal-weight-is-d-if-

Question Number 220221 by fantastic last updated on 08/May/25 $${Q}.{The}\:{density}\:{of}\:{an}\:{object}\:{of}\:{mass}\:{M}\:{is}\:\delta\:{and}\:{the}\:{density}\:{of}\:{the}\:{air}\:{is}\:\rho. \\ $$$${the}\:{mass}\:{of}\:{of}\:{the}\:{object}\:{is}\:{measured}\:{with}\:\:{the}\:{help}\:{of}\:{a}\:{metal}\:{weight}\:{of}\:{mass}\:{m}\:. \\ $$$${the}\:{density}\:{of}\:{the}\:{metal}\:{weight}\:{is}\:{d}. \\ $$$${if}\:\rho\ll\delta\:{them}\:{show}\:{that}\:{the}\:{real}\:{mass}\:{M}\:{will}\:{be} \\ $$$${m}\left(\mathrm{1}−\frac{\rho}{{d}}\:\right)\left(\mathrm{1}+\frac{\rho}{\delta}\right) \\ $$$${I}\:{have}\:{managed}\:{to}\:{M}=\frac{{m}\left(\mathrm{1}−\frac{\rho}{{d}}\right)}{\left(\mathrm{1}−\frac{\rho}{\delta}\right)} \\ $$$${but}\:{I}\:{can}\:{not}\:{figure}\:{it}\:{to}\:{the}\:{end} \\ $$$${please}\:{help} \\…

Question-220208

Question Number 220208 by Tawa11 last updated on 08/May/25 Commented by Tawa11 last updated on 08/May/25 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{and}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{shape}. \\ $$$$\mathrm{volume}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\pi\mathrm{r}^{\mathrm{2}} \mathrm{h}\:\:\:\:\:\mathrm{but}\:\mathrm{I}\:\mathrm{am}\:\mathrm{not}\:\mathrm{getting}\:\mathrm{the}\:\mathrm{area}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{please}? \\ $$ Commented…

i-i-e-pi-2-and-we-can-renote-complex-number-i-as-0-1-1-0-i-i-0-1-1-0-0-1-1-0-But-why-Matrix-Exponent-Calculate-Dosen-t-defined-I-mean-A

Question Number 220190 by SdC355 last updated on 07/May/25 $${i}^{{i}} ={e}^{−\frac{\pi}{\mathrm{2}}} \: \\ $$$$\mathrm{and}\:\mathrm{we}\:\mathrm{can}\:\mathrm{renote}\:\mathrm{complex}\:\mathrm{number}\:\boldsymbol{{i}}\:\mathrm{as}\:\begin{pmatrix}{\mathrm{0}}&{−\mathrm{1}}\\{\mathrm{1}}&{\:\:\:\:\mathrm{0}}\end{pmatrix} \\ $$$$\boldsymbol{{i}}^{\boldsymbol{{i}}} =\begin{pmatrix}{\mathrm{0}}&{−\mathrm{1}}\\{\mathrm{1}}&{\:\:\:\:\mathrm{0}}\end{pmatrix}^{\begin{pmatrix}{\mathrm{0}}&{−\mathrm{1}}\\{\mathrm{1}}&{\:\:\:\:\mathrm{0}}\end{pmatrix}} \: \\ $$$$\:\mathrm{But}\:\mathrm{why}\:\mathrm{Matrix}\:\mathrm{Exponent}\:\mathrm{Calculate}\:\mathrm{Dosen}'\mathrm{t}\:\mathrm{defined}?? \\ $$$$\:\mathrm{I}\:\mathrm{mean}\:{A},{B}\in\mathrm{mat}\left({m},{m}\right) \\ $$$$\mathrm{why}\:\mathrm{A}^{\mathrm{B}} \:\mathrm{dosen}'\mathrm{t}\:\mathrm{defined}??…

0-pi-12-sec-4-5sec-5-sin-2-sec-2-125tan-3-25tan-2-5tan-1-d-

Question Number 220184 by MathematicalUser2357 last updated on 07/May/25 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{12}}} \sqrt{\frac{\mathrm{sec}^{\mathrm{4}} \alpha+\mathrm{5sec}^{\mathrm{5}} \alpha\mathrm{sin}\:\alpha}{\left(\mathrm{2}−\mathrm{sec}^{\mathrm{2}} \alpha\right)\left(\mathrm{125tan}^{\mathrm{3}} \alpha+\mathrm{25tan}^{\mathrm{2}} \alpha+\mathrm{5tan}\:\alpha+\mathrm{1}\right)}}{d}\alpha \\ $$ Answered by MathematicalUser2357 last updated on…

1-0-cos-ln-z-1-z-dz-

Question Number 220177 by SdC355 last updated on 07/May/25 $$\int_{−\mathrm{1}} ^{\:\mathrm{0}} \:\:\mathrm{cos}\left(\frac{\mathrm{ln}\left({z}+\mathrm{1}\right)}{{z}}\right)\:\mathrm{d}{z} \\ $$ Answered by MathematicalUser2357 last updated on 11/May/25 $$\mathrm{cos}\left(\frac{\mathrm{ln}\left({z}+\mathrm{1}\right)}{{z}}\right) \\ $$$$=\mathrm{0}.\mathrm{183457}+\mathrm{1}.\mathrm{20658}\left({z}−\mathrm{0}.\mathrm{5}\right)−\mathrm{3}.\mathrm{31429}\left({z}−\mathrm{0}.\mathrm{5}\right)^{\mathrm{2}} +\mathrm{13}.\mathrm{4993}\left({z}−\mathrm{0}.\mathrm{5}\right)^{\mathrm{3}}…

evaluate-w-e-s-0-s-s-ds-

Question Number 220178 by SdC355 last updated on 07/May/25 $$\mathrm{evaluate} \\ $$$$\int_{{w}} ^{\:\infty} \:\frac{{e}^{{s}} \centerdot\boldsymbol{\Gamma}\left(\mathrm{0},{s}\right)}{{s}}\mathrm{d}{s} \\ $$ Answered by MathematicalUser2357 last updated on 11/May/25 $$\mathrm{I}'\mathrm{m}\:\mathrm{sorry},\:\mathrm{but}\:\mathrm{recheck}\:\mathrm{the}\:\mathrm{integrand}.…

ds-s-2-1-s-s-2-1-

Question Number 220179 by SdC355 last updated on 07/May/25 $$\int\:\:\:\frac{\mathrm{d}{s}}{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} } \\ $$ Answered by Ghisom last updated on 07/May/25 $$=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{\nu} }{{v}}+{C}…