Question Number 207825 by SANOGO last updated on 28/May/24 $${calculer}\:\left(\mathrm{1}−{a}\right)^{{k}\:\:} \::{k}\in{N} \\ $$ Answered by Simurdiera last updated on 28/May/24 $${Binomio}\:{de}\:{Newton} \\ $$ Commented by…
Question Number 207858 by SANOGO last updated on 28/May/24 $${calculer}\:\left(\mathrm{1}−{a}\right)^{{k}} \:\:/{k}\in\overset{} {{N}} \\ $$ Commented by Ghisom last updated on 29/May/24 $$\mathrm{you}\:\mathrm{asked}\:\mathrm{this}\:\mathrm{before}\:\mathrm{and}\:\mathrm{I}\:\mathrm{answered}\:\mathrm{it} \\ $$$$\mathrm{question}\:\mathrm{207825} \\…
Question Number 207852 by hardmath last updated on 28/May/24 Answered by MM42 last updated on 28/May/24 $${y}\left({y}+{x}+\mathrm{2}\right)={x}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} +{xy}+\mathrm{2}{y}−{x}^{\mathrm{2}} =\mathrm{0}={f}\left({x},{y}\right) \\ $$$${x}=\mathrm{4}\Rightarrow{y}^{\mathrm{2}} +\mathrm{6}{y}−\mathrm{16}=\mathrm{0}\Rightarrow{y}=\mathrm{2} \\…
Question Number 207845 by hardmath last updated on 28/May/24 $$\mathrm{Find}: \\ $$$$\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}}\:+…+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{40}} \\ $$ Answered by Frix last updated on 28/May/24 $$\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\underset{{k}=\mathrm{1}} {\overset{{j}}…
Question Number 207846 by kgmxdd last updated on 28/May/24 Answered by Frix last updated on 30/May/24 $${x}=\frac{\mathrm{2}}{\mathrm{3}−{x}} \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}=\mathrm{0} \\ $$$${x}=\mathrm{1}\vee{x}=\mathrm{2} \\ $$ Commented…
Question Number 207842 by Davidtim last updated on 28/May/24 $$\left(−\mathrm{1}\right)^{\infty} =? \\ $$ Answered by Frix last updated on 28/May/24 $$\mathrm{Undefined}. \\ $$ Terms of…
Question Number 207805 by udaythool last updated on 27/May/24 $$\mathrm{I}'\mathrm{ve}\:\mathrm{changed}\:\mathrm{my}\:\mathrm{handset},\:\mathrm{now}\:\mathrm{unable}\:\mathrm{to}\:\mathrm{view}\:\mathrm{saved}\:\mathrm{equations}. \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{access}\:\mathrm{saved}\:\mathrm{equatios}\:\mathrm{in}\:\mathrm{new}\:\mathrm{handset}? \\ $$ Commented by mr W last updated on 27/May/24 $${with}\:{your}\:{old}\:{device}: \\ $$$${save}\:{your}\:{data}\:{using}…
Question Number 207816 by efronzo1 last updated on 27/May/24 $$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}−\sqrt{\mathrm{x}^{\mathrm{3}} −\mathrm{4}}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{4}}−\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{2}}} \\ $$ Commented by Frix last updated on 27/May/24 $$\mathrm{I}\:\mathrm{think}\:\mathrm{it}'\mathrm{s}\:\mathrm{0} \\…
Question Number 207801 by naka3546 last updated on 27/May/24 $$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\:\underset{\mathrm{0}} {\overset{\:\:\:\:\:\:\pi} {\int}}\:\:\frac{\mathrm{sin}\:\left(\mathrm{t}{x}\right)}{{x}}\:{dx}\:\:=\:\centerdot\centerdot\centerdot \\ $$ Commented by naka3546 last updated on 27/May/24 $${t}\:\rightarrow\infty \\ $$…
Question Number 207812 by Davidtim last updated on 27/May/24 $${prove}\:{that}\:\frac{{vector}}{{scalar}}={vector} \\ $$ Answered by A5T last updated on 27/May/24 $${Let}\:{scalar}=\lambda\in\mathbb{R};\:{and}\:{vector},\boldsymbol{{a}}=\left({a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,…,{a}_{{n}} \right)\in\mathbb{R}_{{n}} \\ $$$${where}\:{each}\:{a}_{{i}}…