Menu Close

Author: Tinku Tara

Question-213054

Question Number 213054 by 281981 last updated on 29/Oct/24 Commented by Ghisom last updated on 30/Oct/24 $$\mathrm{in}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{areas}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{and}\:\mathrm{its}\:\mathrm{circumcircle} \\ $$$$\mathrm{is} \\ $$$$\mathrm{1}:\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\:\mathrm{9}}\:\approx\:\mathrm{1}:\mathrm{2}.\mathrm{4} \\ $$$$\mathrm{here}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{is}…

n-15-find-4n-2-4n-120-n-4-2n-3-n-2-

Question Number 213047 by hardmath last updated on 29/Oct/24 $$\boldsymbol{\mathrm{n}}\:=\:\mathrm{15} \\ $$$$\mathrm{find}:\:\:\:\:\:\frac{\mathrm{4n}^{\mathrm{2}} \:\:+\:\:\mathrm{4n}\:\:+\:\:\mathrm{120}}{\:\sqrt{\mathrm{n}^{\mathrm{4}} \:\:+\:\:\mathrm{2n}^{\mathrm{3}} \:\:+\:\:\mathrm{n}^{\mathrm{2}} }}\:\:=\:\:? \\ $$ Answered by mehdee7396 last updated on 29/Oct/24…

L-lim-x-0-1-x-2-tan-1-1-x-2-a-2-1-

Question Number 213073 by ajfour last updated on 29/Oct/24 $${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}−\mathrm{1}\right)\right\} \\ $$ Answered by universe last updated on 29/Oct/24 $${L}\:=\:\underset{{x}\rightarrow\mathrm{0}}…

Question-213074

Question Number 213074 by Spillover last updated on 29/Oct/24 Answered by MrGaster last updated on 29/Oct/24 $$=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \left[−\frac{\mathrm{cos}\left({x}+{y}^{\mathrm{2}} +{z}^{\mathrm{3}} \right)}{\mathrm{3}{z}^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{3}}}…

Question-213034

Question Number 213034 by MrGaster last updated on 29/Oct/24 Commented by MrGaster last updated on 29/Oct/24 English: The diagram shows that if $AB > AC$, and $BD = CE$, $\angle BCD = \angle CBE$, find the measure of $\angle CFE$. Japanese: グラフによると、$AB>AC$で、$BD = CE$,$\angle BCD = \angle CBE$の場合、$\angle CFE$の測定値を求めます。 Commented by mr W last updated on 29/Oct/24…

Area-of-ACBD-A-B-elipse-verticale-AB-MC-M-elipse-horizontale-A-elipse-horizontale-elipse-veeticale-

Question Number 213063 by a.lgnaoui last updated on 29/Oct/24 $$\mathrm{Area}\:\mathrm{of}\:\left[\mathrm{ACBD}\right]\:\:? \\ $$$$\left\{\mathrm{A}\:,\mathrm{B}\:\right\}\in\:\mathrm{elipse}\:\mathrm{verticale}\:\: \\ $$$$\left[\mathrm{AB}\right]\bot\mathrm{MC} \\ $$$$\mathrm{M}\in\:\mathrm{elipse}\:\mathrm{horizontale}\:\: \\ $$$$\mathrm{A}\:\in\left[\mathrm{elipse}\:\mathrm{horizontale}\:\cap\mathrm{elipse}\:\mathrm{veeticale}\right]. \\ $$ Commented by a.lgnaoui last updated…