Question Number 219642 by SdC355 last updated on 30/Apr/25 Answered by SdC355 last updated on 30/Apr/25 $$\mathrm{prove}\:\mathrm{G}\:\mathrm{function}\:\mathrm{equal}\:\mathrm{to}\:\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{e}^{−\omega{t}} }{{t}^{\mathrm{3}} +\mathrm{1}}\:\mathrm{d}{t}\: \\ $$ Terms of…
Question Number 219668 by Rojarani last updated on 30/Apr/25 Answered by SdC355 last updated on 30/Apr/25 $${p}={p}\left(\mathrm{4}−{p}\right)\left(\mathrm{4}−{p}\left(\mathrm{4}−{p}\right)\right) \\ $$$$\mathrm{1}=\left(\mathrm{4}−{p}\right)\left({p}^{\mathrm{2}} −\mathrm{4}{p}+\mathrm{4}\right) \\ $$$$\mathrm{4}{p}^{\mathrm{2}} −\mathrm{16}{p}+\mathrm{16}−{p}^{\mathrm{3}} +\mathrm{4}{p}^{\mathrm{2}} −\mathrm{4}{p}=\mathrm{1}…
Question Number 219637 by SdC355 last updated on 30/Apr/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{J}_{\nu} \left({s}\right){e}^{−\mu{s}} }{\:\sqrt{{s}^{\mathrm{2}} +{R}^{\mathrm{2}} }}\mathrm{d}{s}\:,\:\left(\nu,\mu\in\mathbb{R}^{+} \:,\:\mathrm{R}\in\mathbb{R}^{+} \backslash\left\{\mathrm{0}\right\}\right) \\ $$ Terms of Service Privacy Policy…
Question Number 219660 by Nicholas666 last updated on 30/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{2}\pi} \frac{\mathrm{1}}{{a}\:+\:{b}\:{cos}\:\left({x}\right)}\:{dx} \\ $$$$ \\ $$ Answered by vnm last updated on 01/May/25…
Question Number 219662 by MrGaster last updated on 30/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219663 by MrGaster last updated on 30/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219657 by Nicholas666 last updated on 30/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{prove}; \\ $$$$\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\:\frac{\left(\mathrm{5}{n}−\mathrm{2}\right)\left(\mathrm{5}{n}−\mathrm{3}\right)}{\left(\mathrm{5}{n}−\mathrm{1}\right)\left(\mathrm{5}{n}−\mathrm{4}\right)}\:=\:\varphi \\ $$$$ \\ $$ Answered by MrGaster last updated…
Question Number 219658 by Nicholas666 last updated on 30/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}\:{e}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\overset{{n}^{\mathrm{2}} } {\right)}=\:\frac{\pi}{{e}\sqrt{{e}}} \\ $$$$ \\ $$ Answered by…
Question Number 219659 by Nicholas666 last updated on 30/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}; \\ $$$$\:\:{cos}\:\left({B}+{C}−{A}\right)−{cos}\left({C}+{A}−{B}\right)+{cos}\left({A}+{B}−{C}\right)−{cos}\left({A}+{B}+{C}\right)\:=\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}{sinAcosBsinC} \\ $$$$ \\ $$ Answered by som(math1967) last updated…
Question Number 219685 by alcohol last updated on 30/Apr/25 Answered by SdC355 last updated on 01/May/25 $$\kappa=\frac{\mathrm{2}}{\:\sqrt{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}\:\:\:\left(\mathrm{curvature}\:\kappa=\frac{\mid\mid{y}^{\left(\mathrm{2}\right)} \left({t}\right)\mid\mid}{\:\sqrt{\left(\mathrm{1}+\left({y}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} \right)^{\mathrm{3}} }}\:\right) \\ $$$${r}=\frac{\mathrm{1}}{\kappa}=\frac{\sqrt{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}}…