Menu Close

Author: Tinku Tara

Find-the-relation-between-m-and-n-for-which-the-following-holds-d-y-d-x-x-n-d-x-d-y-y-m-1-

Question Number 207450 by York12 last updated on 15/May/24 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{relation}\:\mathrm{between}\:{m}\:\mathrm{and}\:{n}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{following}\:\:\mathrm{holds} \\ $$$$\:\frac{{d}\left({y}\right)}{{d}\left({x}\right)}\mid_{{x}={n}} =\left(\frac{{d}\left({x}\right)}{{d}\left({y}\right)}\mid_{{y}={m}} \right)^{−\mathrm{1}} \\ $$ Answered by mr W last updated on 15/May/24 Commented…

Relating-to-question-207407-x-3-12x-2-27x-17-0-Let-x-t-4-t-3-21t-37-0-The-Trigonometric-Solution-gives-these-x-1-4-2-7-cos-pi-2sin-1-37-7-98-6-x-2-4-2-7-sin-sin-1-37-7-

Question Number 207434 by Frix last updated on 22/May/24 $$\mathrm{Relating}\:\mathrm{to}\:\mathrm{question}\:\mathrm{207407} \\ $$$${x}^{\mathrm{3}} −\mathrm{12}{x}^{\mathrm{2}} +\mathrm{27}{x}−\mathrm{17}=\mathrm{0} \\ $$$$\mathrm{Let}\:{x}={t}+\mathrm{4} \\ $$$${t}^{\mathrm{3}} −\mathrm{21}{t}−\mathrm{37}=\mathrm{0} \\ $$$$\mathrm{The}\:\mathrm{Trigonometric}\:\mathrm{Solution}\:\mathrm{gives}\:\mathrm{these}: \\ $$$${x}_{\mathrm{1}} =\mathrm{4}−\mathrm{2}\sqrt{\mathrm{7}}\mathrm{cos}\:\frac{\pi+\mathrm{2sin}^{−\mathrm{1}} \:\frac{\mathrm{37}\sqrt{\mathrm{7}}}{\mathrm{98}}}{\mathrm{6}}…

find-the-volume-in-the-first-quadrant-of-the-solid-obtained-by-rotating-the-region-bounded-by-the-curves-x-sinh-y-x-cosh-y-about-y-axis-use-washer-method-

Question Number 207451 by NasaSara last updated on 15/May/24 $${find}\:{the}\:{volume}\:{in}\:{the}\:{first}\:{quadrant} \\ $$$$\:{of}\:{the}\:{solid}\:{obtained}\:{by}\:{rotating} \\ $$$${the}\:{region}\:{bounded}\:{by}\:{the}\:{curves}\: \\ $$$${x}\:=\:{sinh}\left({y}\right)\:,\:{x}\:=\:{cosh}\left({y}\right)\:{about}\:{y}\:{axis}\:\left({use}\:{washer}\:{method}\right)\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

If-y-f-x-d-2-x-dy-2-e-y-1-and-the-tangent-line-to-the-curve-of-the-function-f-x-on-the-point-x-1-1-is-paralel-to-the-straight-line-g-x-x-3-then-find-f-x-

Question Number 207442 by York12 last updated on 15/May/24 $$\mathrm{If}\:{y}={f}\left({x}\right),\:\frac{{d}^{\mathrm{2}} {x}}{{dy}^{\mathrm{2}} }={e}^{{y}+\mathrm{1}} ,\:\mathrm{and}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{line}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:{f}\left({x}\right)\:\mathrm{on}\:\mathrm{the}\:\mathrm{point} \\ $$$$\left({x}_{\mathrm{1}} ,−\mathrm{1}\right)\:\mathrm{is}\:\mathrm{paralel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{straight}\:\mathrm{line}\:{g}\left({x}\right)={x}−\mathrm{3},\:\mathrm{then}\:\mathrm{find}\:{f}'\left({x}\right). \\ $$ Commented by York12 last updated on 15/May/24…