Question Number 219318 by ea last updated on 23/Apr/25 Answered by mr W last updated on 23/Apr/25 Commented by ea last updated on 23/Apr/25 Sir, this is perfect, but I will appreciate if you can provide detailed explanation! showing some workings would be appreciated!…
Question Number 219377 by golsendro last updated on 23/Apr/25 $$\:\mathrm{If}\:\left(\left(\mathrm{fog}\right)^{−\mathrm{1}} \mathrm{of}\right)\left(\mathrm{x}\right)=\:\mathrm{3x}−\mathrm{8} \\ $$$$\:\mathrm{find}\:\mathrm{g}\left(\mathrm{5}\right). \\ $$ Answered by Hanuda354 last updated on 23/Apr/25 $${g}^{−\mathrm{1}} \left({x}\right)\:=\:\mathrm{3}{x}−\mathrm{8} \\…
Question Number 219372 by Nicholas666 last updated on 23/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219373 by Nicholas666 last updated on 23/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219374 by SdC355 last updated on 23/Apr/25 Commented by SdC355 last updated on 23/Apr/25 $$\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}\left({u},{v}\right)=\begin{cases}{\left(\mathrm{2}+{v}\centerdot\mathrm{sin}\left({u}\right)\right)\mathrm{sin}\left(\mathrm{2}\pi{v}\right)}\\{{v}\centerdot\mathrm{cos}\left({u}\right)}\\{\left(\mathrm{2}+{v}\centerdot\mathrm{sin}\left({u}\right)\right)\mathrm{cos}\left(\mathrm{2}\pi{v}\right)+\left(\mathrm{2}{v}−\mathrm{2}\right)}\end{cases} \\ $$$${u}\in\left[−\pi,\pi\right]\:,\:{v}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\mathrm{and}\:\mathrm{vector}\:\mathrm{field}\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)=−{x}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} −{y}\overset{\rightarrow}…
Question Number 219370 by Nicholas666 last updated on 23/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219371 by Nicholas666 last updated on 23/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219365 by Nicholas666 last updated on 23/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219360 by SdC355 last updated on 23/Apr/25 $$\mathrm{prove}\:\underset{{k}=−\infty} {\overset{\:\infty} {\sum}}\:{J}_{{k}} \left({z}\right)=\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219361 by SdC355 last updated on 23/Apr/25 $$\int_{−\infty} ^{+\infty} \:\:\frac{\mathrm{cos}\left({z}\right){e}^{−{z}} }{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z}=?? \\ $$ Answered by breniam last updated on 24/Apr/25 $$\underset{−\infty} {\overset{\mathrm{0}}…