Question Number 206830 by Fabricista15 last updated on 27/Apr/24 $${c}\:=\:\sqrt{\left(\int_{{a}_{\mathrm{0}} } ^{{a}_{\mathrm{1}} } \sqrt{\mathrm{1}+\left[{f}'\left({x}\right)\right]^{\mathrm{2}} }{dx}\right)^{\mathrm{2}} +\left(\int_{{b}_{\mathrm{0}} } ^{{b}_{\mathrm{1}} } \sqrt{\mathrm{1}+\left[{f}'\left({x}\right)\right]^{\mathrm{2}} }{dx}\right)^{\mathrm{2}} } \\ $$$${c}\:=\:\sqrt{{L}_{\mathrm{1}} ^{\mathrm{2}}…
Question Number 206858 by Ghisom last updated on 27/Apr/24 $$\mathrm{prove}\:\mathrm{that} \\ $$$${H}_{{n}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{t}^{{n}} −\mathrm{1}}{{t}−\mathrm{1}}{dt} \\ $$ Answered by mathzup last updated on 28/Apr/24…
Question Number 206827 by Fabricista15 last updated on 27/Apr/24 $$\mathrm{log}\:\left({x}\right)\:=\:\mathrm{sin}\:\left({x}\right) \\ $$$${x}\:=\:? \\ $$ Commented by Ghisom last updated on 27/Apr/24 $$\mathrm{if}\:\mathrm{log}\:{x}\:=\mathrm{ln}\:{x}\:\Rightarrow \\ $$$$\:\:\:\:\:{x}\approx\mathrm{2}.\mathrm{21910715} \\…
Question Number 206837 by akolade last updated on 27/Apr/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 206838 by akolade last updated on 27/Apr/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 206839 by efronzo1 last updated on 27/Apr/24 Answered by A5T last updated on 27/Apr/24 $${k}^{\mathrm{3}} +{k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{2}\leqslant{k}^{\mathrm{2}} +{k}+\mathrm{300}\Leftrightarrow{k}^{\mathrm{3}} +{k}\leqslant\mathrm{298} \\ $$$$\Rightarrow\mathrm{0}\leqslant{k}\leqslant\mathrm{6};\:{checking}\:{implies}\:{k}=\mathrm{0}\:{or}\:\mathrm{2}. \\ $$$${So},{sum}=\mathrm{2}…
Question Number 206848 by BaliramKumar last updated on 27/Apr/24 Commented by BaliramKumar last updated on 27/Apr/24 Answered by A5T last updated on 27/Apr/24 $${Let}\:{side}\:{of}\:{square}={s} \\…
Question Number 206833 by BaliramKumar last updated on 27/Apr/24 Answered by MATHEMATICSAM last updated on 27/Apr/24 $$\mathrm{If}\:\mathrm{0}\:\leq\:\theta\:\leq\:\frac{\pi}{\mathrm{4}}\:\mathrm{then}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\leq\:\mathrm{cos}\theta\:\leq\:\mathrm{1}\: \\ $$$$\mathrm{Or},\:\frac{\mathrm{1}}{\mathrm{2}}\:\leq\:\mathrm{cos}^{\mathrm{2}} \theta\:\leq\:\mathrm{1} \\ $$$${x}\mathrm{cos}\theta\:=\:{x}^{\mathrm{2}} \:+\:{p} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}}…
Question Number 206808 by mustafazaheen last updated on 26/Apr/24 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{10}^{\mathrm{x}} −\mathrm{1}}{\mathrm{x}^{\mathrm{10}} } \\ $$ Answered by mr W last updated on 26/Apr/24 $$\mathrm{10}^{{x}} ={e}^{{x}\mathrm{ln}\:\mathrm{10}}…
Question Number 206805 by BaliramKumar last updated on 26/Apr/24 Answered by A5T last updated on 26/Apr/24 $$\left(\mathrm{225}\right)^{\mathrm{40}} =\mathrm{10}^{{x}} \Rightarrow{x}=\mathrm{40}{log}\mathrm{225}\approx\mathrm{94}.\mathrm{087}<\mathrm{95} \\ $$$$\Rightarrow\mathrm{10}^{\mathrm{94}} <\left(\mathrm{225}\right)^{\mathrm{40}} <\mathrm{10}^{\mathrm{95}} \Rightarrow\mathrm{225}^{\mathrm{40}} \:{has}\:\mathrm{95}\:{digits}…