Menu Close

Author: Tinku Tara

Question-206764

Question Number 206764 by mustafazaheen last updated on 24/Apr/24 Answered by A5T last updated on 24/Apr/24 $${f}\left({g}\left(−\mathrm{3}\right)\right)={f}\left(\sqrt{−\mathrm{3}}\right)={f}\left(\sqrt{\mathrm{3}}{i}\right)=\left(\sqrt{\mathrm{3}}{i}\right)^{\mathrm{2}} =−\mathrm{3} \\ $$ Commented by JDamian last updated…

0-e-x-2-x-2-1-2-2-dx-I-2-D-e-x-2-y-2-x-2-1-2-2-y-2-1-2-2-dA-x-rcos-y-rsin-J-x-y-r-drd-rdrd-D-re-r-2-r-2-cos-2-

Question Number 206773 by MaruMaru last updated on 24/Apr/24 $$\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}= \\ $$$${I}^{\mathrm{2}} =\int\int_{\:\boldsymbol{\mathcal{D}}} \:\frac{{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \left({y}^{\mathrm{2}}…

Question-206750

Question Number 206750 by mr W last updated on 23/Apr/24 Answered by HeferH24 last updated on 23/Apr/24 $$\:{By}\:{similar}\:{triangles}: \\ $$$$\:\frac{{d}}{{c}}\:=\:\frac{{x}}{{b}}\:;\:\:\frac{{d}}{{c}}\:=\:\frac{{a}}{{x}}\: \\ $$$$\:\frac{{a}}{{x}}\:=\:\frac{{x}}{{b}}\:\Leftrightarrow\:{x}^{\mathrm{2}} \:=\:{ab}\:\Leftrightarrow\:{x}=\sqrt{{ab}} \\ $$…

Question-206746

Question Number 206746 by sonukgindia last updated on 23/Apr/24 Answered by A5T last updated on 23/Apr/24 $${f}\left(\mathrm{2}\right)+\mathrm{2}{f}\left(−\mathrm{1}\right)=\mathrm{2}…\left({i}\right) \\ $$$${f}\left(−\mathrm{1}\right)+\mathrm{2}{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\mathrm{1}…\left({ii}\right) \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{2}{f}\left(\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{2}}…\left({iii}\right) \\ $$$$\mathrm{2}×\left({iii}\right)−\left({ii}\right):\:\mathrm{4}{f}\left(\mathrm{2}\right)−{f}\left(−\mathrm{1}\right)=\mathrm{2}…\left({iv}\right) \\ $$$$\mathrm{2}×\left({iv}\right)+\left({i}\right):\:\mathrm{9}{f}\left(\mathrm{2}\right)=\mathrm{6}\Rightarrow{f}\left(\mathrm{2}\right)=\frac{\mathrm{2}}{\mathrm{3}}…

Find-the-missing-number-determinant-72-24-6-96-16-12-108-18-A-12-B-16-C-18-D-20-Please-help-

Question Number 206709 by Nimnim111118 last updated on 23/Apr/24 $$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{missing}\:\mathrm{number} \\ $$$$\:\:\:\:\:\:\:\:\:\:\begin{array}{|c|c|c|}{\:\mathrm{72}}&\hline{\mathrm{24}}&\hline{\:\:\mathrm{6}}\\{\:\mathrm{96}}&\hline{\mathrm{16}}&\hline{\mathrm{12}}\\{\mathrm{108}}&\hline{\:?}&\hline{\mathrm{18}}\\\hline\end{array} \\ $$$$\mathrm{A}.\mathrm{12}\:\:\:\:\:\:\mathrm{B}.\mathrm{16}\:\:\:\:\mathrm{C}.\mathrm{18}\:\:\:\:\:\:\mathrm{D}.\mathrm{20} \\ $$$$\mathrm{Please}\:\mathrm{help}… \\ $$ Commented by Frix last updated on 24/Apr/24…

Question-206729

Question Number 206729 by mr W last updated on 23/Apr/24 Answered by A5T last updated on 23/Apr/24 $$\frac{{sin}\mathrm{84}}{{AD}}=\frac{{sin}\mathrm{54}}{{AC}}\Rightarrow{AD}=\frac{{ACsin}\mathrm{84}}{{sin}\mathrm{54}}…\left({i}\right) \\ $$$$\frac{{sin}\left(?\right)}{{AD}}=\frac{{sin}\left(\mathrm{54}−?\right)}{{BD}={AC}}\Rightarrow{AD}=\frac{{ACsin}\left(?\right)}{{sin}\left(\mathrm{54}−?\right)}…\left({ii}\right) \\ $$$$\left({i}\right)\&\left({ii}\right)\Rightarrow\frac{{sin}\mathrm{84}}{{sin}\mathrm{54}}=\frac{{sin}\left(?\right)}{{sin}\left(\mathrm{54}−?\right)}\Rightarrow?=\mathrm{30}° \\ $$ Commented…