Menu Close

Author: Tinku Tara

Question-214132

Question Number 214132 by ajfour last updated on 29/Nov/24 Answered by MathematicalUser2357 last updated on 29/Nov/24 $${b}^{\mathrm{2}} ={a}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{ac}\:\mathrm{cos}\:\theta \\ $$$$\mathrm{cos}\:\theta=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}{ac}}…

Question-214163

Question Number 214163 by issac last updated on 29/Nov/24 Commented by mathkun last updated on 30/Nov/24 $$\mathrm{I}\:\mathrm{am}\:\mathrm{a}\:\mathrm{begginer}\:\mathrm{in}\:\mathrm{Calculus}. \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{find}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function}? \\ $$$$\mathrm{The}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{y}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{x}\:\mathrm{is}\:\mathrm{not}\:\mathrm{given}. \\ $$ Commented by…

hmmmm-can-we-find-closed-form-of-sum-j-0-1-2-2-j-or-any-idea-

Question Number 214111 by issac last updated on 28/Nov/24 $$\mathrm{hmmmm}………… \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{find}\:\mathrm{closed}\:\mathrm{form}\:\mathrm{of}\:\mathrm{sum} \\ $$$$\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}^{{j}} } }\:??\:\mathrm{or}\:\mathrm{any}\:\mathrm{idea}..? \\ $$ Terms of Service Privacy Policy…

f-x-3x-5-x-2-

Question Number 214116 by Ayya last updated on 28/Nov/24 $${f}\left({x}\right)=\frac{\mathrm{3}{x}−\mathrm{5}}{{x}^{\mathrm{2}} } \\ $$ Answered by issac last updated on 28/Nov/24 $$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{3}{z}−\mathrm{5}}{{z}^{\mathrm{2}} }=\mathrm{div} \\ $$$$\underset{{z}\rightarrow\pm\infty}…

Question-214100

Question Number 214100 by ajfour last updated on 28/Nov/24 Answered by ajfour last updated on 29/Nov/24 Commented by ajfour last updated on 29/Nov/24 $$\mathrm{sin}\:\alpha=\frac{{a}}{\mathrm{2}{b}+{a}}=\frac{\mathrm{1}}{\mathrm{2}{s}+\mathrm{1}}\:\:\:\forall\:\:{s}=\frac{{b}}{{a}},\:{t}=\frac{{r}}{{a}} \\…

Let-F-be-Field-of-characteristic-0-L-i-i-1-2-be-two-algebraic-extension-of-F-and-L-1-L-2-be-a-field-in-F-where-F-is-the-algebraic-closure-of-F-defined-by-l-1-l-2-l-i-L-i-i-1-2-

Question Number 214098 by issac last updated on 28/Nov/24 $$\mathrm{Let}\:{F}\:\mathrm{be}\:\:\mathrm{Field}\:\mathrm{of}\:\mathrm{characteristic}\:\mathrm{0} \\ $$$${L}_{{i}} \:\left({i}=\mathrm{1},\mathrm{2}\right)\:\mathrm{be}\:\mathrm{two}\:\mathrm{algebraic}\:\mathrm{extension} \\ $$$$\mathrm{of}\:{F}\:,\:\mathrm{and}\:{L}_{\mathrm{1}} {L}_{\mathrm{2}} \:\mathrm{be}\:\mathrm{a}\:\mathrm{field}\:\mathrm{in}\:\bar {{F}}\: \\ $$$$\left(\mathrm{where}\:\bar {{F}}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{algebraic}\:\mathrm{closure}\:\:\mathrm{of}\:{F}\right) \\ $$$$\mathrm{defined}\:\mathrm{by}\:\left\{{l}_{\mathrm{1}} {l}_{\mathrm{2}} \mid{l}_{{i}}…