Menu Close

Author: Tinku Tara

expression-of-the-sequence-a-n-defined-by-a-0-gt-0-a-1-gt-0-a-n-2-2-1-n-n-2-2-1-n-2n-3-n-2-a-n-1-n-1-n-2-a-n-

Question Number 206351 by MetaLahor1999 last updated on 12/Apr/24 $${expression}\:{of}\:{the}\:{sequence}\:\left({a}_{{n}} \right)\:{defined} \\ $$$${by}\: \\ $$$$\begin{cases}{{a}_{\mathrm{0}} >\mathrm{0}\:,\:{a}_{\mathrm{1}} >\mathrm{0}}\\{{a}_{{n}+\mathrm{2}} =\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{2}}−\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{2}{n}+\mathrm{3}\right)}{{n}+\mathrm{2}}{a}_{{n}+\mathrm{1}} +\frac{{n}+\mathrm{1}}{{n}+\mathrm{2}}{a}_{{n}} }\end{cases} \\ $$ Commented…

0-1-ln-1-x-ln-1-x-x-dx-n-1-n-find-n-1-n-n-

Question Number 206340 by mnjuly1970 last updated on 12/Apr/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\:{ln}\left(\mathrm{1}−{x}\:\right){ln}\left(\mathrm{1}+{x}\:\right)}{{x}}{dx}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\Omega_{{n}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{find}\::\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\:{n}\:\Omega_{{n}} \:=\:? \\ $$…

Question-206338

Question Number 206338 by mnjuly1970 last updated on 12/Apr/24 Answered by Sorena last updated on 12/Apr/24 $$\left[{x}\right]−\left[{x}^{\mathrm{2}} \right]\geqslant\mathrm{0}\:\rightarrow\:\left[{x}\right]\geqslant\left[{x}^{\mathrm{2}} \right]\:\rightarrow\:{x}\in\left[\mathrm{0},\sqrt{\mathrm{2}}\right) \\ $$ Terms of Service Privacy…

E-Y-X-d-metric-space-prove-E-is-open-in-Y-if-and-only-if-G-open-set-in-X-such-that-E-G-Y-mathematical-analysis-I-

Question Number 206339 by mnjuly1970 last updated on 12/Apr/24 $$ \\ $$$$\:\:\:\:\:{E}\:\subseteq\:{Y}\:\subseteq\:\left(\:{X}\:,\:{d}\:\right)\mid_{{metric}\:{space}} \\ $$$$\:\:\:\:{prove}\:\:{E}\:{is}\:{open}\:{in}\:{Y}\:{if}\:{and}\:\:{only}\:{if} \\ $$$$\:\:\:\:\:\:\:\exists\:{G}\:\left({open}\:{set}\:\right)\:{in}\:{X}\:\:{such}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:{E}\:=\:{G}\:\cap\:{Y}\:\:\:….\:\left({mathematical}\:{analysis}\:\left({I}\right)\right) \\ $$ Answered by Berbere last updated…

Question-206292

Question Number 206292 by cortano21 last updated on 11/Apr/24 Answered by A5T last updated on 11/Apr/24 $${Let}\:{AE}={x};{BE}={y};{BF}={v};{FC}={w} \\ $$$${S}+\mathrm{39}=\frac{\left(\mathrm{2}{v}+{w}\right)\left({x}+{y}\right)}{\mathrm{2}}=\frac{\mathrm{2}{v}\left({x}+{y}\right)}{\mathrm{2}}+\mathrm{15}\Rightarrow{S}={vx} \\ $$$${wx}=\mathrm{54}−{S}=\mathrm{30}−{yw}\Rightarrow{yw}={S}−\mathrm{24} \\ $$$$\frac{\left[{BFD}\right]}{\left[{DFC}\right]}=\frac{{v}}{{w}}\Rightarrow\left[{BFD}\right]=\frac{\mathrm{15}{v}}{{w}} \\ $$$$\frac{\left[{EDB}\right]}{\left[{ADE}\left[\right.\right.}=\frac{{y}}{{x}}\Rightarrow{EDB}=\frac{\mathrm{27}{y}}{{x}}…

Solve-the-system-a-b-1-c-1-2-1-c-b-1-a-1-3-1-a-c-1-b-1-4-1-

Question Number 206294 by sniper237 last updated on 11/Apr/24 $${Solve}\:{the}\:{system} \\ $$$$\left({a}+{b}\right)^{−\mathrm{1}} +{c}^{−\mathrm{1}} =\mathrm{2}^{−\mathrm{1}} \\ $$$$\left({c}+{b}\right)^{−\mathrm{1}} +{a}^{−\mathrm{1}} =\mathrm{3}^{−\mathrm{1}} \\ $$$$\left({a}+{c}\right)^{−\mathrm{1}} +{b}^{−\mathrm{1}} =\mathrm{4}^{−\mathrm{1}} \\ $$ Commented…