Question Number 205941 by cortano12 last updated on 03/Apr/24 $$\:\:\:\mathrm{2}+\frac{\mathrm{2}}{\mathrm{2}−\frac{\mathrm{2}}{\mathrm{2}+\frac{\mathrm{2}}{\mathrm{2}−\frac{\mathrm{2}}{\mathrm{2}+\frac{\mathrm{2}}{\mathrm{3}}}}}}\:=?\: \\ $$$$\: \\ $$ Answered by mr W last updated on 03/Apr/24 $$\mathrm{2}+\frac{\mathrm{2}}{\mathrm{2}−\frac{\mathrm{2}}{\mathrm{2}+\frac{\mathrm{2}}{\mathrm{2}−\frac{\mathrm{2}}{\mathrm{2}+\frac{\mathrm{2}}{\mathrm{3}}}}}} \\ $$$$=\mathrm{2}+\frac{\mathrm{2}}{\mathrm{2}−\frac{\mathrm{2}}{\mathrm{2}+\frac{\mathrm{2}}{\mathrm{2}−\frac{\mathrm{3}}{\mathrm{4}}}}}…
Question Number 205975 by Tinku Tara last updated on 03/Apr/24 $$\mathrm{As}\:\mathrm{reported}\:\mathrm{some}\:\mathrm{users}\:\mathrm{uploaded} \\ $$$$\mathrm{wrong}\:\mathrm{pictures}. \\ $$$$\mathrm{Priviledge}\:\mathrm{of}\:\mathrm{following}\:\mathrm{users}\:\mathrm{are} \\ $$$$\mathrm{now}\:\mathrm{elevated}\:\mathrm{so}\:\mathrm{that}\:\mathrm{they}\:\mathrm{can}\:\mathrm{delete} \\ $$$$\mathrm{any}\:\mathrm{post}. \\ $$$$ \\ $$$$\mathrm{mr}\:\mathrm{W} \\ $$$$\mathrm{Rasheed}\:\mathrm{Sindhi}…
Question Number 205938 by mokys last updated on 03/Apr/24 $$\frac{{dx}}{{dt}}=\:{y}+\mathrm{4}{z}\:….\left(\mathrm{1}\right) \\ $$$$\frac{{dy}}{{dt}}\:=\:{z}−{x}…..\left(\mathrm{2}\right) \\ $$$$\frac{{dz}}{{dt}}\:=\:{x}\:−\:{y}….\left(\mathrm{3}\right) \\ $$$${solve}\:{the}\:{sistem}\:{by}\:{operator}\:\left(\:{elemination}\:{method}\:\right) \\ $$$$ \\ $$$$ \\ $$ Terms of Service…
Question Number 205971 by mnjuly1970 last updated on 03/Apr/24 $$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{9}\:\:\mathscr{M}{athematical}\:\:\:\:\mathscr{A}{nalysis}\:\left(\:{I}\:\right) \\ $$$$\:\:\left({X}\:,\:{d}\:\right)\:{is}\:{a}\:{metric}\:{space}\:{and}\:\:\:\:\:\:\: \\ $$$$\:\:\:\left\{\:{p}_{{n}} \right\}_{{n}=\mathrm{1}} ^{\infty} {is}\:{a}\:{sequence}\:{in}\:{X}\: \\ $$$$\:\:\:\:\:{such}\:{that}\:,\:{p}_{{n}} \overset{{convergent}} {\rightarrow}\:{p}\:.\:{If}\:,\:{K}=\:\left\{{p}_{{n}} \right\}_{{n}=\mathrm{1}} ^{\infty}…
Question Number 205964 by Frix last updated on 03/Apr/24 $$\mathrm{To}\:\mathrm{Tinkutara} \\ $$$$\mathrm{Please}\:\mathrm{remove}\:\mathrm{the}\:\mathrm{user}\:“\mathrm{MathedUp}''.\:\mathrm{He} \\ $$$$\mathrm{had}\:\mathrm{this}\:\mathrm{profile}\:\mathrm{picture}\:\mathrm{and}\:\mathrm{now}\:\mathrm{he}\:\mathrm{uploaded} \\ $$$$\mathrm{porn}\:\mathrm{pictures}.\:\mathrm{I}\:\mathrm{made}\:\mathrm{screenshots}\:\mathrm{in}\:\mathrm{case} \\ $$$$\mathrm{he}\:\mathrm{deletes}\:\mathrm{those}\:\mathrm{before}\:\mathrm{you}\:\mathrm{noticed}. \\ $$ Commented by Tinku Tara last…
Question Number 205935 by EJJDJX last updated on 03/Apr/24 $$\int\underset{{D}} {\int}\left(\mathrm{4}{y}^{\mathrm{2}} {sin}\left({xy}\right)\right){dxdy}\:\:=\:??? \\ $$$${D}:\:\:\:\:\:\:\:{x}={y}\:\:\:\:\:\:{x}=\mathrm{0}\:\:\:\:\:\:\:{y}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant{y}\:\:\:\:\:\:\:\mathrm{0}\leqslant{y}\leqslant\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$ Answered by Berbere last updated on 03/Apr/24…
Question Number 205928 by mathzup last updated on 03/Apr/24 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} +{x}^{\mathrm{8}} } \\ $$ Answered by Frix last updated on 03/Apr/24 $$\int\frac{{dx}}{{x}^{\mathrm{8}} +{x}^{\mathrm{4}}…
Question Number 205922 by cortano12 last updated on 03/Apr/24 $$\:\:\:{x}\:=\:\mathrm{2}\:\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:{x}=\mathrm{3}\:\left({mod}\:\mathrm{4}\right) \\ $$$$\:\:\:{x}=? \\ $$ Answered by Rasheed.Sindhi last updated on 03/Apr/24 $$\:\:\:{x}\:=\:\mathrm{2}\:\left({mod}\:\mathrm{7}\right)\:\wedge\:{x}=\mathrm{3}\:\left({mod}\:\mathrm{4}\right) \\…
Question Number 205916 by mathzup last updated on 02/Apr/24 $${lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:{xln}\left({e}^{{x}} −\mathrm{1}\right) \\ $$ Answered by mathzup last updated on 03/Apr/24 $${lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:{xln}\left({e}^{{x}}…
Question Number 205914 by mr W last updated on 02/Apr/24 $${if}\:{a}+{b}+{c}+{d}+{e}+{f}=\mathrm{10}\:{and} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} +{e}^{\mathrm{2}} +{f}^{\mathrm{2}} =\mathrm{25},\:{find} \\ $$$${a}_{{min}} \:{and}\:{f}_{{max}} . \\ $$…